crossbeam_epoch/sync/
queue.rs

1//! Michael-Scott lock-free queue.
2//!
3//! Usable with any number of producers and consumers.
4//!
5//! Michael and Scott.  Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
6//! Algorithms.  PODC 1996.  <http://dl.acm.org/citation.cfm?id=248106>
7//!
8//! Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004b. Formal Verification of a
9//! Practical Lock-Free Queue Algorithm. <https://doi.org/10.1007/978-3-540-30232-2_7>
10
11use core::mem::MaybeUninit;
12use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
13
14use crossbeam_utils::CachePadded;
15
16use crate::{unprotected, Atomic, Guard, Owned, Shared};
17
18// The representation here is a singly-linked list, with a sentinel node at the front. In general
19// the `tail` pointer may lag behind the actual tail. Non-sentinel nodes are either all `Data` or
20// all `Blocked` (requests for data from blocked threads).
21#[derive(Debug)]
22pub(crate) struct Queue<T> {
23    head: CachePadded<Atomic<Node<T>>>,
24    tail: CachePadded<Atomic<Node<T>>>,
25}
26
27struct Node<T> {
28    /// The slot in which a value of type `T` can be stored.
29    ///
30    /// The type of `data` is `MaybeUninit<T>` because a `Node<T>` doesn't always contain a `T`.
31    /// For example, the sentinel node in a queue never contains a value: its slot is always empty.
32    /// Other nodes start their life with a push operation and contain a value until it gets popped
33    /// out. After that such empty nodes get added to the collector for destruction.
34    data: MaybeUninit<T>,
35
36    next: Atomic<Node<T>>,
37}
38
39// Any particular `T` should never be accessed concurrently, so no need for `Sync`.
40unsafe impl<T: Send> Sync for Queue<T> {}
41unsafe impl<T: Send> Send for Queue<T> {}
42
43impl<T> Queue<T> {
44    /// Create a new, empty queue.
45    pub(crate) fn new() -> Queue<T> {
46        let q = Queue {
47            head: CachePadded::new(Atomic::null()),
48            tail: CachePadded::new(Atomic::null()),
49        };
50        let sentinel = Owned::new(Node {
51            data: MaybeUninit::uninit(),
52            next: Atomic::null(),
53        });
54        unsafe {
55            let guard = unprotected();
56            let sentinel = sentinel.into_shared(guard);
57            q.head.store(sentinel, Relaxed);
58            q.tail.store(sentinel, Relaxed);
59            q
60        }
61    }
62
63    /// Attempts to atomically place `n` into the `next` pointer of `onto`, and returns `true` on
64    /// success. The queue's `tail` pointer may be updated.
65    #[inline(always)]
66    fn push_internal(
67        &self,
68        onto: Shared<'_, Node<T>>,
69        new: Shared<'_, Node<T>>,
70        guard: &Guard,
71    ) -> bool {
72        // is `onto` the actual tail?
73        let o = unsafe { onto.deref() };
74        let next = o.next.load(Acquire, guard);
75        if unsafe { next.as_ref().is_some() } {
76            // if not, try to "help" by moving the tail pointer forward
77            let _ = self
78                .tail
79                .compare_exchange(onto, next, Release, Relaxed, guard);
80            false
81        } else {
82            // looks like the actual tail; attempt to link in `n`
83            let result = o
84                .next
85                .compare_exchange(Shared::null(), new, Release, Relaxed, guard)
86                .is_ok();
87            if result {
88                // try to move the tail pointer forward
89                let _ = self
90                    .tail
91                    .compare_exchange(onto, new, Release, Relaxed, guard);
92            }
93            result
94        }
95    }
96
97    /// Adds `t` to the back of the queue, possibly waking up threads blocked on `pop`.
98    pub(crate) fn push(&self, t: T, guard: &Guard) {
99        let new = Owned::new(Node {
100            data: MaybeUninit::new(t),
101            next: Atomic::null(),
102        });
103        let new = Owned::into_shared(new, guard);
104
105        loop {
106            // We push onto the tail, so we'll start optimistically by looking there first.
107            let tail = self.tail.load(Acquire, guard);
108
109            // Attempt to push onto the `tail` snapshot; fails if `tail.next` has changed.
110            if self.push_internal(tail, new, guard) {
111                break;
112            }
113        }
114    }
115
116    /// Attempts to pop a data node. `Ok(None)` if queue is empty; `Err(())` if lost race to pop.
117    #[inline(always)]
118    fn pop_internal(&self, guard: &Guard) -> Result<Option<T>, ()> {
119        let head = self.head.load(Acquire, guard);
120        let h = unsafe { head.deref() };
121        let next = h.next.load(Acquire, guard);
122        match unsafe { next.as_ref() } {
123            Some(n) => unsafe {
124                self.head
125                    .compare_exchange(head, next, Release, Relaxed, guard)
126                    .map(|_| {
127                        let tail = self.tail.load(Relaxed, guard);
128                        // Advance the tail so that we don't retire a pointer to a reachable node.
129                        if head == tail {
130                            let _ = self
131                                .tail
132                                .compare_exchange(tail, next, Release, Relaxed, guard);
133                        }
134                        guard.defer_destroy(head);
135                        Some(n.data.assume_init_read())
136                    })
137                    .map_err(|_| ())
138            },
139            None => Ok(None),
140        }
141    }
142
143    /// Attempts to pop a data node, if the data satisfies the given condition. `Ok(None)` if queue
144    /// is empty or the data does not satisfy the condition; `Err(())` if lost race to pop.
145    #[inline(always)]
146    fn pop_if_internal<F>(&self, condition: F, guard: &Guard) -> Result<Option<T>, ()>
147    where
148        T: Sync,
149        F: Fn(&T) -> bool,
150    {
151        let head = self.head.load(Acquire, guard);
152        let h = unsafe { head.deref() };
153        let next = h.next.load(Acquire, guard);
154        match unsafe { next.as_ref() } {
155            Some(n) if condition(unsafe { &*n.data.as_ptr() }) => unsafe {
156                self.head
157                    .compare_exchange(head, next, Release, Relaxed, guard)
158                    .map(|_| {
159                        let tail = self.tail.load(Relaxed, guard);
160                        // Advance the tail so that we don't retire a pointer to a reachable node.
161                        if head == tail {
162                            let _ = self
163                                .tail
164                                .compare_exchange(tail, next, Release, Relaxed, guard);
165                        }
166                        guard.defer_destroy(head);
167                        Some(n.data.assume_init_read())
168                    })
169                    .map_err(|_| ())
170            },
171            None | Some(_) => Ok(None),
172        }
173    }
174
175    /// Attempts to dequeue from the front.
176    ///
177    /// Returns `None` if the queue is observed to be empty.
178    pub(crate) fn try_pop(&self, guard: &Guard) -> Option<T> {
179        loop {
180            if let Ok(head) = self.pop_internal(guard) {
181                return head;
182            }
183        }
184    }
185
186    /// Attempts to dequeue from the front, if the item satisfies the given condition.
187    ///
188    /// Returns `None` if the queue is observed to be empty, or the head does not satisfy the given
189    /// condition.
190    pub(crate) fn try_pop_if<F>(&self, condition: F, guard: &Guard) -> Option<T>
191    where
192        T: Sync,
193        F: Fn(&T) -> bool,
194    {
195        loop {
196            if let Ok(head) = self.pop_if_internal(&condition, guard) {
197                return head;
198            }
199        }
200    }
201}
202
203impl<T> Drop for Queue<T> {
204    fn drop(&mut self) {
205        unsafe {
206            let guard = unprotected();
207
208            while self.try_pop(guard).is_some() {}
209
210            // Destroy the remaining sentinel node.
211            let sentinel = self.head.load(Relaxed, guard);
212            drop(sentinel.into_owned());
213        }
214    }
215}
216
217#[cfg(all(test, not(crossbeam_loom)))]
218mod test {
219    use super::*;
220    use crate::pin;
221    use crossbeam_utils::thread;
222
223    struct Queue<T> {
224        queue: super::Queue<T>,
225    }
226
227    impl<T> Queue<T> {
228        pub(crate) fn new() -> Queue<T> {
229            Queue {
230                queue: super::Queue::new(),
231            }
232        }
233
234        pub(crate) fn push(&self, t: T) {
235            let guard = &pin();
236            self.queue.push(t, guard);
237        }
238
239        pub(crate) fn is_empty(&self) -> bool {
240            let guard = &pin();
241            let head = self.queue.head.load(Acquire, guard);
242            let h = unsafe { head.deref() };
243            h.next.load(Acquire, guard).is_null()
244        }
245
246        pub(crate) fn try_pop(&self) -> Option<T> {
247            let guard = &pin();
248            self.queue.try_pop(guard)
249        }
250
251        pub(crate) fn pop(&self) -> T {
252            loop {
253                match self.try_pop() {
254                    None => continue,
255                    Some(t) => return t,
256                }
257            }
258        }
259    }
260
261    #[cfg(miri)]
262    const CONC_COUNT: i64 = 1000;
263    #[cfg(not(miri))]
264    const CONC_COUNT: i64 = 1000000;
265
266    #[test]
267    fn push_try_pop_1() {
268        let q: Queue<i64> = Queue::new();
269        assert!(q.is_empty());
270        q.push(37);
271        assert!(!q.is_empty());
272        assert_eq!(q.try_pop(), Some(37));
273        assert!(q.is_empty());
274    }
275
276    #[test]
277    fn push_try_pop_2() {
278        let q: Queue<i64> = Queue::new();
279        assert!(q.is_empty());
280        q.push(37);
281        q.push(48);
282        assert_eq!(q.try_pop(), Some(37));
283        assert!(!q.is_empty());
284        assert_eq!(q.try_pop(), Some(48));
285        assert!(q.is_empty());
286    }
287
288    #[test]
289    fn push_try_pop_many_seq() {
290        let q: Queue<i64> = Queue::new();
291        assert!(q.is_empty());
292        for i in 0..200 {
293            q.push(i)
294        }
295        assert!(!q.is_empty());
296        for i in 0..200 {
297            assert_eq!(q.try_pop(), Some(i));
298        }
299        assert!(q.is_empty());
300    }
301
302    #[test]
303    fn push_pop_1() {
304        let q: Queue<i64> = Queue::new();
305        assert!(q.is_empty());
306        q.push(37);
307        assert!(!q.is_empty());
308        assert_eq!(q.pop(), 37);
309        assert!(q.is_empty());
310    }
311
312    #[test]
313    fn push_pop_2() {
314        let q: Queue<i64> = Queue::new();
315        q.push(37);
316        q.push(48);
317        assert_eq!(q.pop(), 37);
318        assert_eq!(q.pop(), 48);
319    }
320
321    #[test]
322    fn push_pop_many_seq() {
323        let q: Queue<i64> = Queue::new();
324        assert!(q.is_empty());
325        for i in 0..200 {
326            q.push(i)
327        }
328        assert!(!q.is_empty());
329        for i in 0..200 {
330            assert_eq!(q.pop(), i);
331        }
332        assert!(q.is_empty());
333    }
334
335    #[test]
336    fn push_try_pop_many_spsc() {
337        let q: Queue<i64> = Queue::new();
338        assert!(q.is_empty());
339
340        thread::scope(|scope| {
341            scope.spawn(|_| {
342                let mut next = 0;
343
344                while next < CONC_COUNT {
345                    if let Some(elem) = q.try_pop() {
346                        assert_eq!(elem, next);
347                        next += 1;
348                    }
349                }
350            });
351
352            for i in 0..CONC_COUNT {
353                q.push(i)
354            }
355        })
356        .unwrap();
357    }
358
359    #[test]
360    fn push_try_pop_many_spmc() {
361        fn recv(_t: i32, q: &Queue<i64>) {
362            let mut cur = -1;
363            for _i in 0..CONC_COUNT {
364                if let Some(elem) = q.try_pop() {
365                    assert!(elem > cur);
366                    cur = elem;
367
368                    if cur == CONC_COUNT - 1 {
369                        break;
370                    }
371                }
372            }
373        }
374
375        let q: Queue<i64> = Queue::new();
376        assert!(q.is_empty());
377        thread::scope(|scope| {
378            for i in 0..3 {
379                let q = &q;
380                scope.spawn(move |_| recv(i, q));
381            }
382
383            scope.spawn(|_| {
384                for i in 0..CONC_COUNT {
385                    q.push(i);
386                }
387            });
388        })
389        .unwrap();
390    }
391
392    #[test]
393    fn push_try_pop_many_mpmc() {
394        enum LR {
395            Left(i64),
396            Right(i64),
397        }
398
399        let q: Queue<LR> = Queue::new();
400        assert!(q.is_empty());
401
402        thread::scope(|scope| {
403            for _t in 0..2 {
404                scope.spawn(|_| {
405                    for i in CONC_COUNT - 1..CONC_COUNT {
406                        q.push(LR::Left(i))
407                    }
408                });
409                scope.spawn(|_| {
410                    for i in CONC_COUNT - 1..CONC_COUNT {
411                        q.push(LR::Right(i))
412                    }
413                });
414                scope.spawn(|_| {
415                    let mut vl = vec![];
416                    let mut vr = vec![];
417                    for _i in 0..CONC_COUNT {
418                        match q.try_pop() {
419                            Some(LR::Left(x)) => vl.push(x),
420                            Some(LR::Right(x)) => vr.push(x),
421                            _ => {}
422                        }
423                    }
424
425                    let mut vl2 = vl.clone();
426                    let mut vr2 = vr.clone();
427                    vl2.sort_unstable();
428                    vr2.sort_unstable();
429
430                    assert_eq!(vl, vl2);
431                    assert_eq!(vr, vr2);
432                });
433            }
434        })
435        .unwrap();
436    }
437
438    #[test]
439    fn push_pop_many_spsc() {
440        let q: Queue<i64> = Queue::new();
441
442        thread::scope(|scope| {
443            scope.spawn(|_| {
444                let mut next = 0;
445                while next < CONC_COUNT {
446                    assert_eq!(q.pop(), next);
447                    next += 1;
448                }
449            });
450
451            for i in 0..CONC_COUNT {
452                q.push(i)
453            }
454        })
455        .unwrap();
456        assert!(q.is_empty());
457    }
458
459    #[test]
460    fn is_empty_dont_pop() {
461        let q: Queue<i64> = Queue::new();
462        q.push(20);
463        q.push(20);
464        assert!(!q.is_empty());
465        assert!(!q.is_empty());
466        assert!(q.try_pop().is_some());
467    }
468}