rand/rngs/reseeding.rs
1// Copyright 2018 Developers of the Rand project.
2// Copyright 2013 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! A wrapper around another PRNG that reseeds it after it
11//! generates a certain number of random bytes.
12
13use core::mem::size_of_val;
14
15use rand_core::block::{BlockRng, BlockRngCore, CryptoBlockRng};
16use rand_core::{CryptoRng, RngCore, SeedableRng, TryCryptoRng, TryRngCore};
17
18/// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the
19/// ability to reseed it.
20///
21/// `ReseedingRng` reseeds the underlying PRNG in the following cases:
22///
23/// - On a manual call to [`reseed()`].
24/// - After `clone()`, the clone will be reseeded on first use.
25/// - After the PRNG has generated a configurable number of random bytes.
26///
27/// # When should reseeding after a fixed number of generated bytes be used?
28///
29/// Reseeding after a fixed number of generated bytes is never strictly
30/// *necessary*. Cryptographic PRNGs don't have a limited number of bytes they
31/// can output, or at least not a limit reachable in any practical way. There is
32/// no such thing as 'running out of entropy'.
33///
34/// Occasionally reseeding can be seen as some form of 'security in depth'. Even
35/// if in the future a cryptographic weakness is found in the CSPRNG being used,
36/// or a flaw in the implementation, occasionally reseeding should make
37/// exploiting it much more difficult or even impossible.
38///
39/// Use [`ReseedingRng::new`] with a `threshold` of `0` to disable reseeding
40/// after a fixed number of generated bytes.
41///
42/// # Error handling
43///
44/// Although unlikely, reseeding the wrapped PRNG can fail. `ReseedingRng` will
45/// never panic but try to handle the error intelligently through some
46/// combination of retrying and delaying reseeding until later.
47/// If handling the source error fails `ReseedingRng` will continue generating
48/// data from the wrapped PRNG without reseeding.
49///
50/// Manually calling [`reseed()`] will not have this retry or delay logic, but
51/// reports the error.
52///
53/// # Example
54///
55/// ```
56/// use rand::prelude::*;
57/// use rand_chacha::ChaCha20Core; // Internal part of ChaChaRng that
58/// // implements BlockRngCore
59/// use rand::rngs::OsRng;
60/// use rand::rngs::ReseedingRng;
61///
62/// let mut reseeding_rng = ReseedingRng::<ChaCha20Core, _>::new(0, OsRng).unwrap();
63///
64/// println!("{}", reseeding_rng.random::<u64>());
65///
66/// let mut cloned_rng = reseeding_rng.clone();
67/// assert!(reseeding_rng.random::<u64>() != cloned_rng.random::<u64>());
68/// ```
69///
70/// [`BlockRngCore`]: rand_core::block::BlockRngCore
71/// [`ReseedingRng::new`]: ReseedingRng::new
72/// [`reseed()`]: ReseedingRng::reseed
73#[derive(Debug)]
74pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>)
75where
76 R: BlockRngCore + SeedableRng,
77 Rsdr: TryRngCore;
78
79impl<R, Rsdr> ReseedingRng<R, Rsdr>
80where
81 R: BlockRngCore + SeedableRng,
82 Rsdr: TryRngCore,
83{
84 /// Create a new `ReseedingRng` from an existing PRNG, combined with a RNG
85 /// to use as reseeder.
86 ///
87 /// `threshold` sets the number of generated bytes after which to reseed the
88 /// PRNG. Set it to zero to never reseed based on the number of generated
89 /// values.
90 pub fn new(threshold: u64, reseeder: Rsdr) -> Result<Self, Rsdr::Error> {
91 Ok(ReseedingRng(BlockRng::new(ReseedingCore::new(
92 threshold, reseeder,
93 )?)))
94 }
95
96 /// Immediately reseed the generator
97 ///
98 /// This discards any remaining random data in the cache.
99 pub fn reseed(&mut self) -> Result<(), Rsdr::Error> {
100 self.0.reset();
101 self.0.core.reseed()
102 }
103}
104
105// TODO: this should be implemented for any type where the inner type
106// implements RngCore, but we can't specify that because ReseedingCore is private
107impl<R, Rsdr> RngCore for ReseedingRng<R, Rsdr>
108where
109 R: BlockRngCore<Item = u32> + SeedableRng,
110 Rsdr: TryRngCore,
111{
112 #[inline(always)]
113 fn next_u32(&mut self) -> u32 {
114 self.0.next_u32()
115 }
116
117 #[inline(always)]
118 fn next_u64(&mut self) -> u64 {
119 self.0.next_u64()
120 }
121
122 fn fill_bytes(&mut self, dest: &mut [u8]) {
123 self.0.fill_bytes(dest)
124 }
125}
126
127impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr>
128where
129 R: BlockRngCore + SeedableRng + Clone,
130 Rsdr: TryRngCore + Clone,
131{
132 fn clone(&self) -> ReseedingRng<R, Rsdr> {
133 // Recreating `BlockRng` seems easier than cloning it and resetting
134 // the index.
135 ReseedingRng(BlockRng::new(self.0.core.clone()))
136 }
137}
138
139impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr>
140where
141 R: BlockRngCore<Item = u32> + SeedableRng + CryptoBlockRng,
142 Rsdr: TryCryptoRng,
143{
144}
145
146#[derive(Debug)]
147struct ReseedingCore<R, Rsdr> {
148 inner: R,
149 reseeder: Rsdr,
150 threshold: i64,
151 bytes_until_reseed: i64,
152}
153
154impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr>
155where
156 R: BlockRngCore + SeedableRng,
157 Rsdr: TryRngCore,
158{
159 type Item = <R as BlockRngCore>::Item;
160 type Results = <R as BlockRngCore>::Results;
161
162 fn generate(&mut self, results: &mut Self::Results) {
163 if self.bytes_until_reseed <= 0 {
164 // We get better performance by not calling only `reseed` here
165 // and continuing with the rest of the function, but by directly
166 // returning from a non-inlined function.
167 return self.reseed_and_generate(results);
168 }
169 let num_bytes = size_of_val(results.as_ref());
170 self.bytes_until_reseed -= num_bytes as i64;
171 self.inner.generate(results);
172 }
173}
174
175impl<R, Rsdr> ReseedingCore<R, Rsdr>
176where
177 R: BlockRngCore + SeedableRng,
178 Rsdr: TryRngCore,
179{
180 /// Create a new `ReseedingCore`.
181 ///
182 /// `threshold` is the maximum number of bytes produced by
183 /// [`BlockRngCore::generate`] before attempting reseeding.
184 fn new(threshold: u64, mut reseeder: Rsdr) -> Result<Self, Rsdr::Error> {
185 // Because generating more values than `i64::MAX` takes centuries on
186 // current hardware, we just clamp to that value.
187 // Also we set a threshold of 0, which indicates no limit, to that
188 // value.
189 let threshold = if threshold == 0 {
190 i64::MAX
191 } else if threshold <= i64::MAX as u64 {
192 threshold as i64
193 } else {
194 i64::MAX
195 };
196
197 let inner = R::try_from_rng(&mut reseeder)?;
198
199 Ok(ReseedingCore {
200 inner,
201 reseeder,
202 threshold,
203 bytes_until_reseed: threshold,
204 })
205 }
206
207 /// Reseed the internal PRNG.
208 fn reseed(&mut self) -> Result<(), Rsdr::Error> {
209 R::try_from_rng(&mut self.reseeder).map(|result| {
210 self.bytes_until_reseed = self.threshold;
211 self.inner = result
212 })
213 }
214
215 #[inline(never)]
216 fn reseed_and_generate(&mut self, results: &mut <Self as BlockRngCore>::Results) {
217 trace!("Reseeding RNG (periodic reseed)");
218
219 let num_bytes = size_of_val(results.as_ref());
220
221 if let Err(e) = self.reseed() {
222 warn!("Reseeding RNG failed: {}", e);
223 let _ = e;
224 }
225
226 self.bytes_until_reseed = self.threshold - num_bytes as i64;
227 self.inner.generate(results);
228 }
229}
230
231impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr>
232where
233 R: BlockRngCore + SeedableRng + Clone,
234 Rsdr: TryRngCore + Clone,
235{
236 fn clone(&self) -> ReseedingCore<R, Rsdr> {
237 ReseedingCore {
238 inner: self.inner.clone(),
239 reseeder: self.reseeder.clone(),
240 threshold: self.threshold,
241 bytes_until_reseed: 0, // reseed clone on first use
242 }
243 }
244}
245
246impl<R, Rsdr> CryptoBlockRng for ReseedingCore<R, Rsdr>
247where
248 R: BlockRngCore<Item = u32> + SeedableRng + CryptoBlockRng,
249 Rsdr: TryCryptoRng,
250{
251}
252
253#[cfg(feature = "std_rng")]
254#[cfg(test)]
255mod test {
256 use crate::rngs::mock::StepRng;
257 use crate::rngs::std::Core;
258 use crate::Rng;
259
260 use super::ReseedingRng;
261
262 #[test]
263 fn test_reseeding() {
264 let zero = StepRng::new(0, 0);
265 let thresh = 1; // reseed every time the buffer is exhausted
266 let mut reseeding = ReseedingRng::<Core, _>::new(thresh, zero).unwrap();
267
268 // RNG buffer size is [u32; 64]
269 // Debug is only implemented up to length 32 so use two arrays
270 let mut buf = ([0u32; 32], [0u32; 32]);
271 reseeding.fill(&mut buf.0);
272 reseeding.fill(&mut buf.1);
273 let seq = buf;
274 for _ in 0..10 {
275 reseeding.fill(&mut buf.0);
276 reseeding.fill(&mut buf.1);
277 assert_eq!(buf, seq);
278 }
279 }
280
281 #[test]
282 #[allow(clippy::redundant_clone)]
283 fn test_clone_reseeding() {
284 let zero = StepRng::new(0, 0);
285 let mut rng1 = ReseedingRng::<Core, _>::new(32 * 4, zero).unwrap();
286
287 let first: u32 = rng1.random();
288 for _ in 0..10 {
289 let _ = rng1.random::<u32>();
290 }
291
292 let mut rng2 = rng1.clone();
293 assert_eq!(first, rng2.random::<u32>());
294 }
295}