zerocopy/pointer/ptr.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{marker::PhantomData, ptr::NonNull};
10
11use super::{inner::PtrInner, invariant::*};
12use crate::{CastType, KnownLayout};
13
14/// Module used to gate access to [`Ptr`]'s fields.
15mod def {
16 use super::*;
17
18 #[cfg(doc)]
19 use super::super::invariant;
20
21 /// A raw pointer with more restrictions.
22 ///
23 /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
24 /// following ways (note that these requirements only hold of non-zero-sized
25 /// referents):
26 /// - It must derive from a valid allocation.
27 /// - It must reference a byte range which is contained inside the
28 /// allocation from which it derives.
29 /// - As a consequence, the byte range it references must have a size
30 /// which does not overflow `isize`.
31 ///
32 /// Depending on how `Ptr` is parameterized, it may have additional
33 /// invariants:
34 /// - `ptr` conforms to the aliasing invariant of
35 /// [`I::Aliasing`](invariant::Aliasing).
36 /// - `ptr` conforms to the alignment invariant of
37 /// [`I::Alignment`](invariant::Alignment).
38 /// - `ptr` conforms to the validity invariant of
39 /// [`I::Validity`](invariant::Validity).
40 ///
41 /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
42 ///
43 /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
44 pub struct Ptr<'a, T, I>
45 where
46 T: ?Sized,
47 I: Invariants,
48 {
49 /// # Invariants
50 ///
51 /// 0. `ptr` conforms to the aliasing invariant of
52 /// [`I::Aliasing`](invariant::Aliasing).
53 /// 1. `ptr` conforms to the alignment invariant of
54 /// [`I::Alignment`](invariant::Alignment).
55 /// 2. `ptr` conforms to the validity invariant of
56 /// [`I::Validity`](invariant::Validity).
57 // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
58 ptr: PtrInner<'a, T>,
59 _invariants: PhantomData<I>,
60 }
61
62 impl<'a, T, I> Ptr<'a, T, I>
63 where
64 T: 'a + ?Sized,
65 I: Invariants,
66 {
67 /// Constructs a `Ptr` from a [`NonNull`].
68 ///
69 /// # Safety
70 ///
71 /// The caller promises that:
72 ///
73 /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
74 /// some valid Rust allocation, `A`.
75 /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
76 /// provenance for `A`.
77 /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
78 /// byte range which is entirely contained in `A`.
79 /// 3. `ptr` addresses a byte range whose length fits in an `isize`.
80 /// 4. `ptr` addresses a byte range which does not wrap around the
81 /// address space.
82 /// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
83 /// live for at least `'a`.
84 /// 6. `ptr` conforms to the aliasing invariant of
85 /// [`I::Aliasing`](invariant::Aliasing).
86 /// 7. `ptr` conforms to the alignment invariant of
87 /// [`I::Alignment`](invariant::Alignment).
88 /// 8. `ptr` conforms to the validity invariant of
89 /// [`I::Validity`](invariant::Validity).
90 pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> {
91 // SAFETY: The caller has promised (in 0 - 5) to satisfy all safety
92 // invariants of `PtrInner::new`.
93 let ptr = unsafe { PtrInner::new(ptr) };
94 // SAFETY: The caller has promised (in 6 - 8) to satisfy all safety
95 // invariants of `Ptr`.
96 Self { ptr, _invariants: PhantomData }
97 }
98
99 /// Constructs a new `Ptr` from a [`PtrInner`].
100 ///
101 /// # Safety
102 ///
103 /// The caller promises that:
104 ///
105 /// 0. `ptr` conforms to the aliasing invariant of
106 /// [`I::Aliasing`](invariant::Aliasing).
107 /// 1. `ptr` conforms to the alignment invariant of
108 /// [`I::Alignment`](invariant::Alignment).
109 /// 2. `ptr` conforms to the validity invariant of
110 /// [`I::Validity`](invariant::Validity).
111 pub(super) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
112 // SAFETY: The caller has promised to satisfy all safety invariants
113 // of `Ptr`.
114 Self { ptr, _invariants: PhantomData }
115 }
116
117 /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
118 ///
119 /// Note that this method does not consume `self`. The caller should
120 /// watch out for `unsafe` code which uses the returned value in a way
121 /// that violates the safety invariants of `self`.
122 pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
123 self.ptr
124 }
125 }
126}
127
128#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
129pub use def::Ptr;
130
131/// External trait implementations on [`Ptr`].
132mod _external {
133 use super::*;
134 use core::fmt::{Debug, Formatter};
135
136 /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
137 /// (besides aliasing) are unaffected by the number of references that exist
138 /// to `Ptr`'s referent.
139 impl<'a, T, I> Copy for Ptr<'a, T, I>
140 where
141 T: 'a + ?Sized,
142 I: Invariants<Aliasing = Shared>,
143 {
144 }
145
146 /// SAFETY: Shared pointers are safely `Clone`. `Ptr`'s other invariants
147 /// (besides aliasing) are unaffected by the number of references that exist
148 /// to `Ptr`'s referent.
149 impl<'a, T, I> Clone for Ptr<'a, T, I>
150 where
151 T: 'a + ?Sized,
152 I: Invariants<Aliasing = Shared>,
153 {
154 #[inline]
155 fn clone(&self) -> Self {
156 *self
157 }
158 }
159
160 impl<'a, T, I> Debug for Ptr<'a, T, I>
161 where
162 T: 'a + ?Sized,
163 I: Invariants,
164 {
165 #[inline]
166 fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
167 self.as_inner().as_non_null().fmt(f)
168 }
169 }
170}
171
172/// Methods for converting to and from `Ptr` and Rust's safe reference types.
173mod _conversions {
174 use super::*;
175 use crate::util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance};
176
177 /// `&'a T` → `Ptr<'a, T>`
178 impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
179 where
180 T: 'a + ?Sized,
181 {
182 /// Constructs a `Ptr` from a shared reference.
183 #[doc(hidden)]
184 #[inline]
185 pub fn from_ref(ptr: &'a T) -> Self {
186 let inner = PtrInner::from_ref(ptr);
187 // SAFETY:
188 // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
189 // invariant of `Shared`.
190 // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
191 // invariant of `Aligned`.
192 // 2. `ptr`, by invariant on `&'a T`, conforms to the validity
193 // invariant of `Valid`.
194 unsafe { Self::from_inner(inner) }
195 }
196 }
197
198 /// `&'a mut T` → `Ptr<'a, T>`
199 impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
200 where
201 T: 'a + ?Sized,
202 {
203 /// Constructs a `Ptr` from an exclusive reference.
204 #[inline]
205 pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
206 let inner = PtrInner::from_mut(ptr);
207 // SAFETY:
208 // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
209 // invariant of `Exclusive`.
210 // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
211 // invariant of `Aligned`.
212 // 2. `ptr`, by invariant on `&'a mut T`, conforms to the validity
213 // invariant of `Valid`.
214 unsafe { Self::from_inner(inner) }
215 }
216 }
217
218 /// `Ptr<'a, T>` → `&'a T`
219 impl<'a, T, I> Ptr<'a, T, I>
220 where
221 T: 'a + ?Sized,
222 I: Invariants<Alignment = Aligned, Validity = Valid>,
223 I::Aliasing: Reference,
224 {
225 /// Converts `self` to a shared reference.
226 // This consumes `self`, not `&self`, because `self` is, logically, a
227 // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
228 // this doesn't prevent the caller from still using the pointer after
229 // calling `as_ref`.
230 #[allow(clippy::wrong_self_convention)]
231 pub(crate) fn as_ref(self) -> &'a T {
232 let raw = self.as_inner().as_non_null();
233 // SAFETY: This invocation of `NonNull::as_ref` satisfies its
234 // documented safety preconditions:
235 //
236 // 1. The pointer is properly aligned. This is ensured by-contract
237 // on `Ptr`, because the `I::Alignment` is `Aligned`.
238 //
239 // 2. If the pointer's referent is not zero-sized, then the pointer
240 // must be “dereferenceable” in the sense defined in the module
241 // documentation; i.e.:
242 //
243 // > The memory range of the given size starting at the pointer
244 // > must all be within the bounds of a single allocated object.
245 // > [2]
246 //
247 // This is ensured by contract on all `PtrInner`s.
248 //
249 // 3. The pointer must point to an initialized instance of `T`. This
250 // is ensured by-contract on `Ptr`, because the `I::Validity` is
251 // `Valid`.
252 //
253 // 4. You must enforce Rust’s aliasing rules. This is ensured by
254 // contract on `Ptr`, because `I::Aliasing: Reference`. Either it
255 // is `Shared` or `Exclusive`. If it is `Shared`, other
256 // references may not mutate the referent outside of
257 // `UnsafeCell`s.
258 //
259 // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
260 // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
261 unsafe { raw.as_ref() }
262 }
263 }
264
265 impl<'a, T, I> Ptr<'a, T, I>
266 where
267 T: 'a + ?Sized,
268 I: Invariants,
269 I::Aliasing: Reference,
270 {
271 /// Reborrows `self`, producing another `Ptr`.
272 ///
273 /// Since `self` is borrowed immutably, this prevents any mutable
274 /// methods from being called on `self` as long as the returned `Ptr`
275 /// exists.
276 #[doc(hidden)]
277 #[inline]
278 #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
279 pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
280 where
281 'a: 'b,
282 {
283 // SAFETY: The following all hold by invariant on `self`, and thus
284 // hold of `ptr = self.as_inner()`:
285 // 0. SEE BELOW.
286 // 1. `ptr` conforms to the alignment invariant of
287 // [`I::Alignment`](invariant::Alignment).
288 // 2. `ptr` conforms to the validity invariant of
289 // [`I::Validity`](invariant::Validity).
290 //
291 // For aliasing (6 above), since `I::Aliasing: Reference`,
292 // there are two cases for `I::Aliasing`:
293 // - For `invariant::Shared`: `'a` outlives `'b`, and so the
294 // returned `Ptr` does not permit accessing the referent any
295 // longer than is possible via `self`. For shared aliasing, it is
296 // sound for multiple `Ptr`s to exist simultaneously which
297 // reference the same memory, so creating a new one is not
298 // problematic.
299 // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
300 // return a `Ptr` with lifetime `'b`, `self` is inaccessible to
301 // the caller for the lifetime `'b` - in other words, `self` is
302 // inaccessible to the caller as long as the returned `Ptr`
303 // exists. Since `self` is an exclusive `Ptr`, no other live
304 // references or `Ptr`s may exist which refer to the same memory
305 // while `self` is live. Thus, as long as the returned `Ptr`
306 // exists, no other references or `Ptr`s which refer to the same
307 // memory may be live.
308 unsafe { Ptr::from_inner(self.as_inner()) }
309 }
310 }
311
312 /// `Ptr<'a, T>` → `&'a mut T`
313 impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
314 where
315 T: 'a + ?Sized,
316 {
317 /// Converts `self` to a mutable reference.
318 #[allow(clippy::wrong_self_convention)]
319 pub(crate) fn as_mut(self) -> &'a mut T {
320 let mut raw = self.as_inner().as_non_null();
321 // SAFETY: This invocation of `NonNull::as_mut` satisfies its
322 // documented safety preconditions:
323 //
324 // 1. The pointer is properly aligned. This is ensured by-contract
325 // on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
326 //
327 // 2. If the pointer's referent is not zero-sized, then the pointer
328 // must be “dereferenceable” in the sense defined in the module
329 // documentation; i.e.:
330 //
331 // > The memory range of the given size starting at the pointer
332 // > must all be within the bounds of a single allocated object.
333 // > [2]
334 //
335 // This is ensured by contract on all `PtrInner`s.
336 //
337 // 3. The pointer must point to an initialized instance of `T`. This
338 // is ensured by-contract on `Ptr`, because the validity
339 // invariant is `Valid`.
340 //
341 // 4. You must enforce Rust’s aliasing rules. This is ensured by
342 // contract on `Ptr`, because the `ALIASING_INVARIANT` is
343 // `Exclusive`.
344 //
345 // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
346 // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
347 unsafe { raw.as_mut() }
348 }
349 }
350
351 /// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>`
352 impl<'a, T, I> Ptr<'a, T, I>
353 where
354 T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized,
355 I: Invariants,
356 {
357 /// Converts `self` to a transparent wrapper type into a `Ptr` to the
358 /// wrapped inner type.
359 pub(crate) fn transparent_wrapper_into_inner(
360 self,
361 ) -> Ptr<
362 'a,
363 T::Inner,
364 (
365 I::Aliasing,
366 <T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied,
367 <T::ValidityVariance as ValidityVariance<I::Validity>>::Applied,
368 ),
369 > {
370 // SAFETY:
371 // - By invariant on `TransparentWrapper::cast_into_inner`:
372 // - This cast preserves address and referent size, and thus the
373 // returned pointer addresses the same bytes as `p`
374 // - This cast preserves provenance
375 // - By invariant on `TransparentWrapper<UnsafeCellVariance =
376 // Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same
377 // byte ranges. Since `p` and the returned pointer address the
378 // same byte range, they refer to `UnsafeCell`s at the same byte
379 // ranges.
380 // - By invariant on `TransparentWrapper`, since `self` satisfies
381 // the validity invariant `I::Validity`, the returned pointer (of
382 // type `T::Inner`) satisfies the given "applied" validity
383 // invariant.
384 let ptr = unsafe { self.transmute_unchecked(|p| T::cast_into_inner(p)) };
385 // SAFETY: By invariant on `TransparentWrapper`, since `self`
386 // satisfies the alignment invariant `I::Alignment`, the returned
387 // pointer (of type `T::Inner`) satisfies the given "applied"
388 // alignment invariant.
389 unsafe { ptr.assume_alignment() }
390 }
391 }
392
393 /// `Ptr<'a, T>` → `Ptr<'a, U>`
394 impl<'a, T: ?Sized, I> Ptr<'a, T, I>
395 where
396 I: Invariants,
397 {
398 /// Casts to a different (unsized) target type without checking interior
399 /// mutability.
400 ///
401 /// Callers should prefer [`cast_unsized`] where possible.
402 ///
403 /// [`cast_unsized`]: Ptr::cast_unsized
404 ///
405 /// # Safety
406 ///
407 /// The caller promises that `u = cast(p)` is a pointer cast with the
408 /// following properties:
409 /// - `u` addresses a subset of the bytes addressed by `p`
410 /// - `u` has the same provenance as `p`
411 /// - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must exist
412 /// at ranges identical to those at which `UnsafeCell`s exist in `*p`
413 /// - It is sound to transmute a pointer of type `T` with aliasing
414 /// `I::Aliasing` and validity `I::Validity` to a pointer of type `U`
415 /// with aliasing `I::Aliasing` and validity `V`. This is a subtle
416 /// soundness requirement that is a function of `T`, `U`,
417 /// `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
418 /// presence, absence, or specific location of `UnsafeCell`s in `T`
419 /// and/or `U`.
420 #[doc(hidden)]
421 #[inline]
422 pub unsafe fn transmute_unchecked<U: ?Sized, V, F>(
423 self,
424 cast: F,
425 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
426 where
427 V: Validity,
428 F: FnOnce(*mut T) -> *mut U,
429 {
430 let ptr = cast(self.as_inner().as_non_null().as_ptr());
431
432 // SAFETY: Caller promises that `cast` returns a pointer whose
433 // address is in the range of `self.as_inner().as_non_null()`'s referent. By
434 // invariant, none of these addresses are null.
435 let ptr = unsafe { NonNull::new_unchecked(ptr) };
436
437 // SAFETY:
438 //
439 // Lemma 1: `ptr` has the same provenance as `self`. The caller
440 // promises that `cast` preserves provenance, and we call it with
441 // `self.as_inner().as_non_null()`.
442 //
443 // 0. By invariant, if `self`'s referent is not zero sized, then
444 // `self` is derived from some valid Rust allocation, `A`. By
445 // Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr`
446 // is derived from `A`.
447 // 1. By invariant, if `self`'s referent is not zero sized, then
448 // `self` has valid provenance for `A`. By Lemma 1, so does
449 // `ptr`.
450 // 2. By invariant on `self` and caller precondition, if `ptr`'s
451 // referent is not zero sized, then `ptr` addresses a byte range
452 // which is entirely contained in `A`.
453 // 3. By invariant on `self` and caller precondition, `ptr`
454 // addresses a byte range whose length fits in an `isize`.
455 // 4. By invariant on `self` and caller precondition, `ptr`
456 // addresses a byte range which does not wrap around the address
457 // space.
458 // 5. By invariant on `self`, if `self`'s referent is not zero
459 // sized, then `A` is guaranteed to live for at least `'a`.
460 // 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
461 // - `Exclusive`: `self` is the only `Ptr` or reference which is
462 // permitted to read or modify the referent for the lifetime
463 // `'a`. Since we consume `self` by value, the returned pointer
464 // remains the only `Ptr` or reference which is permitted to
465 // read or modify the referent for the lifetime `'a`.
466 // - `Shared`: Since `self` has aliasing `Shared`, we know that
467 // no other code may mutate the referent during the lifetime
468 // `'a`, except via `UnsafeCell`s. The caller promises that
469 // `UnsafeCell`s cover the same byte ranges in `*self` and
470 // `*ptr`. For each byte in the referent, there are two cases:
471 // - If the byte is not covered by an `UnsafeCell` in `*ptr`,
472 // then it is not covered in `*self`. By invariant on `self`,
473 // it will not be mutated during `'a`, as required by the
474 // constructed pointer. Similarly, the returned pointer will
475 // not permit any mutations to these locations, as required
476 // by the invariant on `self`.
477 // - If the byte is covered by an `UnsafeCell` in `*ptr`, then
478 // the returned pointer's invariants do not assume that the
479 // byte will not be mutated during `'a`. While the returned
480 // pointer will permit mutation of this byte during `'a`, by
481 // invariant on `self`, no other code assumes that this will
482 // not happen.
483 // - `Inaccessible`: There are no restrictions we need to uphold.
484 // 7. `ptr` trivially satisfies the alignment invariant `Unaligned`.
485 // 8. The caller promises that `ptr` conforms to the validity
486 // invariant `V` with respect to its referent type, `U`.
487 unsafe { Ptr::new(ptr) }
488 }
489 }
490
491 /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
492 impl<'a, T, I> Ptr<'a, T, I>
493 where
494 I: Invariants,
495 {
496 /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
497 /// `Unalign<T>`.
498 pub(crate) fn into_unalign(
499 self,
500 ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
501 // SAFETY:
502 // - This cast preserves provenance.
503 // - This cast preserves address. `Unalign<T>` promises to have the
504 // same size as `T`, and so the cast returns a pointer addressing
505 // the same byte range as `p`.
506 // - By the same argument, the returned pointer refers to
507 // `UnsafeCell`s at the same locations as `p`.
508 // - `Unalign<T>` promises to have the same bit validity as `T`
509 let ptr = unsafe {
510 #[allow(clippy::as_conversions)]
511 self.transmute_unchecked(|p: *mut T| p as *mut crate::Unalign<T>)
512 };
513 ptr.bikeshed_recall_aligned()
514 }
515 }
516}
517
518/// State transitions between invariants.
519mod _transitions {
520 use super::*;
521 use crate::{AlignmentError, TryFromBytes, ValidityError};
522
523 impl<'a, T, I> Ptr<'a, T, I>
524 where
525 T: 'a + ?Sized,
526 I: Invariants,
527 {
528 /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
529 /// `Exclusive` aliasing.
530 ///
531 /// This allows code which is generic over aliasing to down-cast to a
532 /// concrete aliasing.
533 ///
534 /// [`Exclusive`]: crate::pointer::invariant::Exclusive
535 #[inline]
536 pub(crate) fn into_exclusive_or_post_monomorphization_error(
537 self,
538 ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
539 // NOTE(https://github.com/rust-lang/rust/issues/131625): We do this
540 // rather than just having `Aliasing::IS_EXCLUSIVE` have the panic
541 // behavior because doing it that way causes rustdoc to fail while
542 // attempting to document hidden items (since it evaluates the
543 // constant - and thus panics).
544 trait AliasingExt: Aliasing {
545 const IS_EXCL: bool;
546 }
547
548 impl<A: Aliasing> AliasingExt for A {
549 const IS_EXCL: bool = {
550 const_assert!(Self::IS_EXCLUSIVE);
551 true
552 };
553 }
554
555 assert!(I::Aliasing::IS_EXCL);
556
557 // SAFETY: We've confirmed that `self` already has the aliasing
558 // `Exclusive`. If it didn't, either the preceding assert would fail
559 // or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty*
560 // sure that it's guaranteed to fail const eval, but the `assert!`
561 // provides a backstop in case that doesn't work.
562 unsafe { self.assume_exclusive() }
563 }
564
565 /// Assumes that `self` satisfies the invariants `H`.
566 ///
567 /// # Safety
568 ///
569 /// The caller promises that `self` satisfies the invariants `H`.
570 unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
571 // SAFETY: The caller has promised to satisfy all parameterized
572 // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
573 // by-contract by the source `Ptr`.
574 unsafe { Ptr::from_inner(self.as_inner()) }
575 }
576
577 /// Helps the type system unify two distinct invariant types which are
578 /// actually the same.
579 pub(crate) fn unify_invariants<
580 H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
581 >(
582 self,
583 ) -> Ptr<'a, T, H> {
584 // SAFETY: The associated type bounds on `H` ensure that the
585 // invariants are unchanged.
586 unsafe { self.assume_invariants::<H>() }
587 }
588
589 /// Assumes that `self` satisfies the aliasing requirement of `A`.
590 ///
591 /// # Safety
592 ///
593 /// The caller promises that `self` satisfies the aliasing requirement
594 /// of `A`.
595 #[inline]
596 pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
597 self,
598 ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
599 // SAFETY: The caller promises that `self` satisfies the aliasing
600 // requirements of `A`.
601 unsafe { self.assume_invariants() }
602 }
603
604 /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
605 ///
606 /// # Safety
607 ///
608 /// The caller promises that `self` satisfies the aliasing requirement
609 /// of `Exclusive`.
610 ///
611 /// [`Exclusive`]: crate::pointer::invariant::Exclusive
612 #[inline]
613 pub(crate) unsafe fn assume_exclusive(
614 self,
615 ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
616 // SAFETY: The caller promises that `self` satisfies the aliasing
617 // requirements of `Exclusive`.
618 unsafe { self.assume_aliasing::<Exclusive>() }
619 }
620
621 /// Assumes that `self`'s referent is validly-aligned for `T` if
622 /// required by `A`.
623 ///
624 /// # Safety
625 ///
626 /// The caller promises that `self`'s referent conforms to the alignment
627 /// invariant of `T` if required by `A`.
628 #[inline]
629 pub(crate) unsafe fn assume_alignment<A: Alignment>(
630 self,
631 ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
632 // SAFETY: The caller promises that `self`'s referent is
633 // well-aligned for `T` if required by `A` .
634 unsafe { self.assume_invariants() }
635 }
636
637 /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
638 /// on success.
639 pub(crate) fn bikeshed_try_into_aligned(
640 self,
641 ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
642 where
643 T: Sized,
644 {
645 if let Err(err) =
646 crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
647 {
648 return Err(err.with_src(self));
649 }
650
651 // SAFETY: We just checked the alignment.
652 Ok(unsafe { self.assume_alignment::<Aligned>() })
653 }
654
655 /// Recalls that `self`'s referent is validly-aligned for `T`.
656 #[inline]
657 // TODO(#859): Reconsider the name of this method before making it
658 // public.
659 pub(crate) fn bikeshed_recall_aligned(
660 self,
661 ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
662 where
663 T: crate::Unaligned,
664 {
665 // SAFETY: The bound `T: Unaligned` ensures that `T` has no
666 // non-trivial alignment requirement.
667 unsafe { self.assume_alignment::<Aligned>() }
668 }
669
670 /// Assumes that `self`'s referent conforms to the validity requirement
671 /// of `V`.
672 ///
673 /// # Safety
674 ///
675 /// The caller promises that `self`'s referent conforms to the validity
676 /// requirement of `V`.
677 #[doc(hidden)]
678 #[must_use]
679 #[inline]
680 pub unsafe fn assume_validity<V: Validity>(
681 self,
682 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
683 // SAFETY: The caller promises that `self`'s referent conforms to
684 // the validity requirement of `V`.
685 unsafe { self.assume_invariants() }
686 }
687
688 /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
689 ///
690 /// # Safety
691 ///
692 /// The caller promises to uphold the safety preconditions of
693 /// `self.assume_validity<invariant::Initialized>()`.
694 #[doc(hidden)]
695 #[must_use]
696 #[inline]
697 pub unsafe fn assume_initialized(
698 self,
699 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
700 // SAFETY: The caller has promised to uphold the safety
701 // preconditions.
702 unsafe { self.assume_validity::<Initialized>() }
703 }
704
705 /// A shorthand for `self.assume_validity<Valid>()`.
706 ///
707 /// # Safety
708 ///
709 /// The caller promises to uphold the safety preconditions of
710 /// `self.assume_validity<Valid>()`.
711 #[doc(hidden)]
712 #[must_use]
713 #[inline]
714 pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
715 // SAFETY: The caller has promised to uphold the safety
716 // preconditions.
717 unsafe { self.assume_validity::<Valid>() }
718 }
719
720 /// Recalls that `self`'s referent is initialized.
721 #[doc(hidden)]
722 #[must_use]
723 #[inline]
724 // TODO(#859): Reconsider the name of this method before making it
725 // public.
726 pub fn bikeshed_recall_initialized_from_bytes(
727 self,
728 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>
729 where
730 T: crate::IntoBytes + crate::FromBytes,
731 I: Invariants<Validity = Valid>,
732 {
733 // SAFETY: The `T: IntoBytes` bound ensures that any bit-valid `T`
734 // is entirely initialized. `I: Invariants<Validity = Valid>`
735 // ensures that `self`'s referent is a bit-valid `T`. Producing an
736 // `Initialized` `Ptr` may permit the caller to write arbitrary
737 // initialized bytes to the referent (depending on aliasing mode and
738 // presence of `UnsafeCell`s). `T: FromBytes` ensures that any byte
739 // sequence written will remain a bit-valid `T`.
740 unsafe { self.assume_initialized() }
741 }
742
743 /// Recalls that `self`'s referent is initialized.
744 #[doc(hidden)]
745 #[must_use]
746 #[inline]
747 // TODO(#859): Reconsider the name of this method before making it
748 // public.
749 pub fn bikeshed_recall_initialized_immutable(
750 self,
751 ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)>
752 where
753 T: crate::IntoBytes + crate::Immutable,
754 I: Invariants<Aliasing = Shared, Validity = Valid>,
755 {
756 // SAFETY: The `T: IntoBytes` bound ensures that any bit-valid `T`
757 // is entirely initialized. `I: Invariants<Validity = Valid>`
758 // ensures that `self`'s referent is a bit-valid `T`. Since `T:
759 // Immutable` and the aliasing is `Shared`, the resulting `Ptr`
760 // cannot be used to modify the referent, and so it's acceptable
761 // that going from `Valid` to `Initialized` may increase the set of
762 // values allowed in the referent.
763 unsafe { self.assume_initialized() }
764 }
765
766 /// Recalls that `self`'s referent is bit-valid for `T`.
767 #[doc(hidden)]
768 #[must_use]
769 #[inline]
770 // TODO(#859): Reconsider the name of this method before making it
771 // public.
772 pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>
773 where
774 T: crate::FromBytes,
775 I: Invariants<Validity = Initialized>,
776 {
777 // SAFETY: The bound `T: FromBytes` ensures that any initialized
778 // sequence of bytes is bit-valid for `T`. `I: Invariants<Validity =
779 // invariant::Initialized>` ensures that all of the referent bytes
780 // are initialized.
781 unsafe { self.assume_valid() }
782 }
783
784 /// Checks that `self`'s referent is validly initialized for `T`,
785 /// returning a `Ptr` with `Valid` on success.
786 ///
787 /// # Panics
788 ///
789 /// This method will panic if
790 /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
791 ///
792 /// # Safety
793 ///
794 /// On error, unsafe code may rely on this method's returned
795 /// `ValidityError` containing `self`.
796 #[inline]
797 pub(crate) fn try_into_valid<R>(
798 mut self,
799 ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
800 where
801 T: TryFromBytes + Read<I::Aliasing, R>,
802 I::Aliasing: Reference,
803 I: Invariants<Validity = Initialized>,
804 R: crate::pointer::ReadReason,
805 {
806 // This call may panic. If that happens, it doesn't cause any soundness
807 // issues, as we have not generated any invalid state which we need to
808 // fix before returning.
809 if T::is_bit_valid(self.reborrow().forget_aligned()) {
810 // SAFETY: If `T::is_bit_valid`, code may assume that `self`
811 // contains a bit-valid instance of `Self`.
812 Ok(unsafe { self.assume_valid() })
813 } else {
814 Err(ValidityError::new(self))
815 }
816 }
817
818 /// Forgets that `self`'s referent is validly-aligned for `T`.
819 #[doc(hidden)]
820 #[must_use]
821 #[inline]
822 pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
823 // SAFETY: `Unaligned` is less restrictive than `Aligned`.
824 unsafe { self.assume_invariants() }
825 }
826 }
827}
828
829/// Casts of the referent type.
830mod _casts {
831 use super::*;
832 use crate::{CastError, SizeError};
833
834 impl<'a, T, I> Ptr<'a, T, I>
835 where
836 T: 'a + ?Sized,
837 I: Invariants,
838 {
839 /// Casts to a different (unsized) target type without checking interior
840 /// mutability.
841 ///
842 /// Callers should prefer [`cast_unsized`] where possible.
843 ///
844 /// [`cast_unsized`]: Ptr::cast_unsized
845 ///
846 /// # Safety
847 ///
848 /// The caller promises that `u = cast(p)` is a pointer cast with the
849 /// following properties:
850 /// - `u` addresses a subset of the bytes addressed by `p`
851 /// - `u` has the same provenance as `p`
852 /// - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must exist
853 /// at ranges identical to those at which `UnsafeCell`s exist in `*p`
854 #[doc(hidden)]
855 #[inline]
856 pub unsafe fn cast_unsized_unchecked<U, F: FnOnce(*mut T) -> *mut U>(
857 self,
858 cast: F,
859 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
860 where
861 U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
862 {
863 // SAFETY:
864 // - The caller promises that `u = cast(p)` is a pointer which
865 // satisfies:
866 // - `u` addresses a subset of the bytes addressed by `p`
867 // - `u` has the same provenance as `p`
868 // - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must
869 // exist at ranges identical to those at which `UnsafeCell`s
870 // exist in `*p`
871 // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
872 // `I::Validity` is either `Uninit` or `Initialized`. In both
873 // cases, the bit validity `I::Validity` has the same semantics
874 // regardless of referent type. In other words, the set of allowed
875 // referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
876 // (_, _, I::Validity)>` are identical.
877 unsafe { self.transmute_unchecked(cast) }
878 }
879
880 /// Casts to a different (unsized) target type.
881 ///
882 /// # Safety
883 ///
884 /// The caller promises that `u = cast(p)` is a pointer cast with the
885 /// following properties:
886 /// - `u` addresses a subset of the bytes addressed by `p`
887 /// - `u` has the same provenance as `p`
888 #[doc(hidden)]
889 #[inline]
890 pub unsafe fn cast_unsized<U, F, R, S>(
891 self,
892 cast: F,
893 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
894 where
895 T: Read<I::Aliasing, R>,
896 U: 'a + ?Sized + Read<I::Aliasing, S> + CastableFrom<T, I::Validity, I::Validity>,
897 R: ReadReason,
898 S: ReadReason,
899 F: FnOnce(*mut T) -> *mut U,
900 {
901 // SAFETY: Because `T` and `U` both implement `Read<I::Aliasing, _>`,
902 // either:
903 // - `I::Aliasing` is `Exclusive`
904 // - `T` and `U` are both `Immutable`, in which case they trivially
905 // contain `UnsafeCell`s at identical locations
906 //
907 // The caller promises all other safety preconditions.
908 unsafe { self.cast_unsized_unchecked(cast) }
909 }
910 }
911
912 impl<'a, T, I> Ptr<'a, T, I>
913 where
914 T: 'a + KnownLayout + ?Sized,
915 I: Invariants<Validity = Initialized>,
916 {
917 /// Casts this pointer-to-initialized into a pointer-to-bytes.
918 #[allow(clippy::wrong_self_convention)]
919 pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
920 where
921 R: ReadReason,
922 T: Read<I::Aliasing, R>,
923 I::Aliasing: Reference,
924 {
925 let bytes = match T::size_of_val_raw(self.as_inner().as_non_null()) {
926 Some(bytes) => bytes,
927 // SAFETY: `KnownLayout::size_of_val_raw` promises to always
928 // return `Some` so long as the resulting size fits in a
929 // `usize`. By invariant on `Ptr`, `self` refers to a range of
930 // bytes whose size fits in an `isize`, which implies that it
931 // also fits in a `usize`.
932 None => unsafe { core::hint::unreachable_unchecked() },
933 };
934
935 // SAFETY:
936 // - `slice_from_raw_parts_mut` and `.cast` both preserve the
937 // pointer's address, and `bytes` is the length of `p`, so the
938 // returned pointer addresses the same bytes as `p`
939 // - `slice_from_raw_parts_mut` and `.cast` both preserve provenance
940 let ptr: Ptr<'a, [u8], _> = unsafe {
941 self.cast_unsized(|p: *mut T| {
942 #[allow(clippy::as_conversions)]
943 core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes)
944 })
945 };
946
947 let ptr = ptr.bikeshed_recall_aligned();
948
949 // SAFETY: `ptr`'s referent begins as `Initialized`, denoting that
950 // all bytes of the referent are initialized bytes. The referent
951 // type is then casted to `[u8]`, whose only validity invariant is
952 // that its bytes are initialized. This validity invariant is
953 // satisfied by the `Initialized` invariant on the starting `ptr`.
954 unsafe { ptr.assume_validity::<Valid>() }
955 }
956 }
957
958 impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
959 where
960 T: 'a,
961 I: Invariants,
962 {
963 /// Casts this pointer-to-array into a slice.
964 #[allow(clippy::wrong_self_convention)]
965 pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
966 let slice = self.as_inner().as_slice();
967 // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
968 // `slice` refers to the same byte range as `self.as_inner()`.
969 //
970 // 6. Thus, `slice` conforms to the aliasing invariant of
971 // `I::Aliasing` because `self` does.
972 // 7. By the above lemma, `slice` conforms to the alignment
973 // invariant of `I::Alignment` because `self` does.
974 // 8. By the above lemma, `slice` conforms to the validity invariant
975 // of `I::Validity` because `self` does.
976 unsafe { Ptr::from_inner(slice) }
977 }
978 }
979
980 /// For caller convenience, these methods are generic over alignment
981 /// invariant. In practice, the referent is always well-aligned, because the
982 /// alignment of `[u8]` is 1.
983 impl<'a, I> Ptr<'a, [u8], I>
984 where
985 I: Invariants<Validity = Valid>,
986 {
987 /// Attempts to cast `self` to a `U` using the given cast type.
988 ///
989 /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
990 /// then the cast will only succeed if it would produce an object with
991 /// the given metadata.
992 ///
993 /// Returns `None` if the resulting `U` would be invalidly-aligned, if
994 /// no `U` can fit in `self`, or if the provided pointer metadata
995 /// describes an invalid instance of `U`. On success, returns a pointer
996 /// to the largest-possible `U` which fits in `self`.
997 ///
998 /// # Safety
999 ///
1000 /// The caller may assume that this implementation is correct, and may
1001 /// rely on that assumption for the soundness of their code. In
1002 /// particular, the caller may assume that, if `try_cast_into` returns
1003 /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
1004 /// non-overlapping byte ranges within `self`, and that `ptr` and
1005 /// `remainder` entirely cover `self`. Finally:
1006 /// - If this is a prefix cast, `ptr` has the same address as `self`.
1007 /// - If this is a suffix cast, `remainder` has the same address as
1008 /// `self`.
1009 #[inline(always)]
1010 pub(crate) fn try_cast_into<U, R>(
1011 self,
1012 cast_type: CastType,
1013 meta: Option<U::PointerMetadata>,
1014 ) -> Result<
1015 (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
1016 CastError<Self, U>,
1017 >
1018 where
1019 R: ReadReason,
1020 I::Aliasing: Reference,
1021 U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1022 {
1023 let (inner, remainder) =
1024 self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
1025 err.map_src(|inner|
1026 // SAFETY: `PtrInner::try_cast_into` promises to return its
1027 // original argument on error, which was originally produced
1028 // by `self.as_inner()`, which is guaranteed to satisfy
1029 // `Ptr`'s invariants.
1030 unsafe { Ptr::from_inner(inner) })
1031 })?;
1032
1033 // SAFETY:
1034 // 0. Since `U: Read<I::Aliasing, _>`, either:
1035 // - `I::Aliasing` is `Exclusive`, in which case both `src` and
1036 // `ptr` conform to `Exclusive`
1037 // - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
1038 // know that `[u8]: Immutable`). In this case, neither `U` nor
1039 // `[u8]` permit mutation, and so `Shared` aliasing is
1040 // satisfied.
1041 // 1. `ptr` conforms to the alignment invariant of `Aligned` because
1042 // it is derived from `try_cast_into`, which promises that the
1043 // object described by `target` is validly aligned for `U`.
1044 // 2. By trait bound, `self` - and thus `target` - is a bit-valid
1045 // `[u8]`. All bit-valid `[u8]`s have all of their bytes
1046 // initialized, so `ptr` conforms to the validity invariant of
1047 // `Initialized`.
1048 let res = unsafe { Ptr::from_inner(inner) };
1049
1050 // SAFETY:
1051 // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
1052 // have `UnsafeCell`s at the same locations. Type casting does
1053 // not affect aliasing.
1054 // 1. `[u8]` has no alignment requirement.
1055 // 2. `self` has validity `Valid` and has type `[u8]`. Since
1056 // `remainder` references a subset of `self`'s referent, it is
1057 // also bit-valid.
1058 let remainder = unsafe { Ptr::from_inner(remainder) };
1059
1060 Ok((res, remainder))
1061 }
1062
1063 /// Attempts to cast `self` into a `U`, failing if all of the bytes of
1064 /// `self` cannot be treated as a `U`.
1065 ///
1066 /// In particular, this method fails if `self` is not validly-aligned
1067 /// for `U` or if `self`'s size is not a valid size for `U`.
1068 ///
1069 /// # Safety
1070 ///
1071 /// On success, the caller may assume that the returned pointer
1072 /// references the same byte range as `self`.
1073 #[allow(unused)]
1074 #[inline(always)]
1075 pub(crate) fn try_cast_into_no_leftover<U, R>(
1076 self,
1077 meta: Option<U::PointerMetadata>,
1078 ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
1079 where
1080 I::Aliasing: Reference,
1081 U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1082 R: ReadReason,
1083 {
1084 // TODO(#67): Remove this allow. See NonNulSlicelExt for more
1085 // details.
1086 #[allow(unstable_name_collisions)]
1087 match self.try_cast_into(CastType::Prefix, meta) {
1088 Ok((slf, remainder)) => {
1089 if remainder.len() == 0 {
1090 Ok(slf)
1091 } else {
1092 // Undo the cast so we can return the original bytes.
1093 let slf = slf.as_bytes();
1094 // Restore the initial alignment invariant of `self`.
1095 //
1096 // SAFETY: The referent type of `slf` is now equal to
1097 // that of `self`, but the alignment invariants
1098 // nominally differ. Since `slf` and `self` refer to the
1099 // same memory and no actions have been taken that would
1100 // violate the original invariants on `self`, it is
1101 // sound to apply the alignment invariant of `self` onto
1102 // `slf`.
1103 let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
1104 let slf = slf.unify_invariants();
1105 Err(CastError::Size(SizeError::<_, U>::new(slf)))
1106 }
1107 }
1108 Err(err) => Err(err),
1109 }
1110 }
1111 }
1112
1113 impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
1114 where
1115 T: 'a + ?Sized,
1116 I: Invariants<Aliasing = Exclusive>,
1117 {
1118 /// Converts this `Ptr` into a pointer to the underlying data.
1119 ///
1120 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1121 /// guarantees that we possess the only reference.
1122 ///
1123 /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
1124 ///
1125 /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
1126 #[must_use]
1127 #[inline(always)]
1128 pub fn get_mut(self) -> Ptr<'a, T, I> {
1129 // SAFETY:
1130 // - The closure uses an `as` cast, which preserves address
1131 // range and provenance.
1132 // - Aliasing is `Exclusive`, and so we are not required to promise
1133 // anything about the locations of `UnsafeCell`s.
1134 // - `UnsafeCell<T>` has the same bit validity as `T` [1], and so if
1135 // `self` has a particular validity invariant, then the same holds
1136 // of the returned `Ptr`. Technically the term "representation"
1137 // doesn't guarantee this, but the subsequent sentence in the
1138 // documentation makes it clear that this is the intention.
1139 //
1140 // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1141 //
1142 // `UnsafeCell<T>` has the same in-memory representation as its
1143 // inner type `T`. A consequence of this guarantee is that it is
1144 // possible to convert between `T` and `UnsafeCell<T>`.
1145 #[allow(clippy::as_conversions)]
1146 let ptr = unsafe { self.transmute_unchecked(|p| p as *mut T) };
1147
1148 // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
1149 // and so if `self` is guaranteed to be aligned, then so is the
1150 // returned `Ptr`.
1151 //
1152 // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1153 //
1154 // `UnsafeCell<T>` has the same in-memory representation as
1155 // its inner type `T`. A consequence of this guarantee is that
1156 // it is possible to convert between `T` and `UnsafeCell<T>`.
1157 let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
1158 ptr.unify_invariants()
1159 }
1160 }
1161}
1162
1163/// Projections through the referent.
1164mod _project {
1165 use super::*;
1166
1167 impl<'a, T, I> Ptr<'a, T, I>
1168 where
1169 T: 'a + ?Sized,
1170 I: Invariants<Validity = Initialized>,
1171 {
1172 /// Projects a field from `self`.
1173 ///
1174 /// # Safety
1175 ///
1176 /// `project` has the same safety preconditions as
1177 /// `cast_unsized_unchecked`.
1178 #[doc(hidden)]
1179 #[inline]
1180 pub unsafe fn project<U: 'a + ?Sized>(
1181 self,
1182 projector: impl FnOnce(*mut T) -> *mut U,
1183 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, Initialized)> {
1184 // TODO(#1122): If `cast_unsized` were able to reason that, when
1185 // casting from an `Initialized` pointer, the result is another
1186 // `Initialized` pointer, we could remove this method entirely.
1187
1188 // SAFETY: This method has the same safety preconditions as
1189 // `cast_unsized_unchecked`.
1190 let ptr = unsafe { self.cast_unsized_unchecked(projector) };
1191
1192 // SAFETY: If all of the bytes of `self` are initialized (as
1193 // promised by `I: Invariants<Validity = Initialized>`), then any
1194 // subset of those bytes are also all initialized.
1195 unsafe { ptr.assume_validity::<Initialized>() }
1196 }
1197 }
1198
1199 impl<'a, T, I> Ptr<'a, [T], I>
1200 where
1201 T: 'a,
1202 I: Invariants,
1203 {
1204 /// The number of slice elements in the object referenced by `self`.
1205 ///
1206 /// # Safety
1207 ///
1208 /// Unsafe code my rely on `len` satisfying the above contract.
1209 pub(crate) fn len(&self) -> usize {
1210 self.as_inner().len()
1211 }
1212 }
1213
1214 impl<'a, T, I> Ptr<'a, [T], I>
1215 where
1216 T: 'a,
1217 I: Invariants,
1218 I::Aliasing: Reference,
1219 {
1220 /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
1221 pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
1222 // SAFETY:
1223 // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
1224 // because projection does not impact the aliasing invariant.
1225 // 1. `elem`, conditionally, conforms to the validity invariant of
1226 // `I::Alignment`. If `elem` is projected from data well-aligned
1227 // for `[T]`, `elem` will be valid for `T`.
1228 // 2. `elem`, conditionally, conforms to the validity invariant of
1229 // `I::Validity`. If `elem` is projected from data valid for
1230 // `[T]`, `elem` will be valid for `T`.
1231 self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
1232 }
1233 }
1234}
1235
1236#[cfg(test)]
1237mod tests {
1238 use core::mem::{self, MaybeUninit};
1239
1240 use super::*;
1241 #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
1242 use crate::util::AsAddress;
1243 use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
1244
1245 mod test_ptr_try_cast_into_soundness {
1246 use super::*;
1247
1248 // This test is designed so that if `Ptr::try_cast_into_xxx` are
1249 // buggy, it will manifest as unsoundness that Miri can detect.
1250
1251 // - If `size_of::<T>() == 0`, `N == 4`
1252 // - Else, `N == 4 * size_of::<T>()`
1253 //
1254 // Each test will be run for each metadata in `metas`.
1255 fn test<T, I, const N: usize>(metas: I)
1256 where
1257 T: ?Sized + KnownLayout + Immutable + FromBytes,
1258 I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
1259 {
1260 let mut bytes = [MaybeUninit::<u8>::uninit(); N];
1261 let initialized = [MaybeUninit::new(0u8); N];
1262 for start in 0..=bytes.len() {
1263 for end in start..=bytes.len() {
1264 // Set all bytes to uninitialized other than those in
1265 // the range we're going to pass to `try_cast_from`.
1266 // This allows Miri to detect out-of-bounds reads
1267 // because they read uninitialized memory. Without this,
1268 // some out-of-bounds reads would still be in-bounds of
1269 // `bytes`, and so might spuriously be accepted.
1270 bytes = [MaybeUninit::<u8>::uninit(); N];
1271 let bytes = &mut bytes[start..end];
1272 // Initialize only the byte range we're going to pass to
1273 // `try_cast_from`.
1274 bytes.copy_from_slice(&initialized[start..end]);
1275
1276 let bytes = {
1277 let bytes: *const [MaybeUninit<u8>] = bytes;
1278 #[allow(clippy::as_conversions)]
1279 let bytes = bytes as *const [u8];
1280 // SAFETY: We just initialized these bytes to valid
1281 // `u8`s.
1282 unsafe { &*bytes }
1283 };
1284
1285 // SAFETY: The bytes in `slf` must be initialized.
1286 unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
1287 slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
1288 ) -> usize {
1289 let t = slf.bikeshed_recall_valid().as_ref();
1290
1291 let bytes = {
1292 let len = mem::size_of_val(t);
1293 let t: *const T = t;
1294 // SAFETY:
1295 // - We know `t`'s bytes are all initialized
1296 // because we just read it from `slf`, which
1297 // points to an initialized range of bytes. If
1298 // there's a bug and this doesn't hold, then
1299 // that's exactly what we're hoping Miri will
1300 // catch!
1301 // - Since `T: FromBytes`, `T` doesn't contain
1302 // any `UnsafeCell`s, so it's okay for `t: T`
1303 // and a `&[u8]` to the same memory to be
1304 // alive concurrently.
1305 unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
1306 };
1307
1308 // This assertion ensures that `t`'s bytes are read
1309 // and compared to another value, which in turn
1310 // ensures that Miri gets a chance to notice if any
1311 // of `t`'s bytes are uninitialized, which they
1312 // shouldn't be (see the comment above).
1313 assert_eq!(bytes, vec![0u8; bytes.len()]);
1314
1315 mem::size_of_val(t)
1316 }
1317
1318 for meta in metas.clone().into_iter() {
1319 for cast_type in [CastType::Prefix, CastType::Suffix] {
1320 if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
1321 .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
1322 {
1323 // SAFETY: All bytes in `bytes` have been
1324 // initialized.
1325 let len = unsafe { validate_and_get_len(slf) };
1326 assert_eq!(remaining.len(), bytes.len() - len);
1327 #[allow(unstable_name_collisions)]
1328 let bytes_addr = bytes.as_ptr().addr();
1329 #[allow(unstable_name_collisions)]
1330 let remaining_addr =
1331 remaining.as_inner().as_non_null().as_ptr().addr();
1332 match cast_type {
1333 CastType::Prefix => {
1334 assert_eq!(remaining_addr, bytes_addr + len)
1335 }
1336 CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
1337 }
1338
1339 if let Some(want) = meta {
1340 let got = KnownLayout::pointer_to_metadata(
1341 slf.as_inner().as_non_null().as_ptr(),
1342 );
1343 assert_eq!(got, want);
1344 }
1345 }
1346 }
1347
1348 if let Ok(slf) = Ptr::from_ref(bytes)
1349 .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
1350 {
1351 // SAFETY: All bytes in `bytes` have been
1352 // initialized.
1353 let len = unsafe { validate_and_get_len(slf) };
1354 assert_eq!(len, bytes.len());
1355
1356 if let Some(want) = meta {
1357 let got = KnownLayout::pointer_to_metadata(
1358 slf.as_inner().as_non_null().as_ptr(),
1359 );
1360 assert_eq!(got, want);
1361 }
1362 }
1363 }
1364 }
1365 }
1366 }
1367
1368 #[derive(FromBytes, KnownLayout, Immutable)]
1369 #[repr(C)]
1370 struct SliceDst<T> {
1371 a: u8,
1372 trailing: [T],
1373 }
1374
1375 // Each test case becomes its own `#[test]` function. We do this because
1376 // this test in particular takes far, far longer to execute under Miri
1377 // than all of our other tests combined. Previously, we had these
1378 // execute sequentially in a single test function. We run Miri tests in
1379 // parallel in CI, but this test being sequential meant that most of
1380 // that parallelism was wasted, as all other tests would finish in a
1381 // fraction of the total execution time, leaving this test to execute on
1382 // a single thread for the remainder of the test. By putting each test
1383 // case in its own function, we permit better use of available
1384 // parallelism.
1385 macro_rules! test {
1386 ($test_name:ident: $ty:ty) => {
1387 #[test]
1388 #[allow(non_snake_case)]
1389 fn $test_name() {
1390 const S: usize = core::mem::size_of::<$ty>();
1391 const N: usize = if S == 0 { 4 } else { S * 4 };
1392 test::<$ty, _, N>([None]);
1393
1394 // If `$ty` is a ZST, then we can't pass `None` as the
1395 // pointer metadata, or else computing the correct trailing
1396 // slice length will panic.
1397 if S == 0 {
1398 test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
1399 test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
1400 } else {
1401 test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1402 test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1403 }
1404 }
1405 };
1406 ($ty:ident) => {
1407 test!($ty: $ty);
1408 };
1409 ($($ty:ident),*) => { $(test!($ty);)* }
1410 }
1411
1412 test!(empty_tuple: ());
1413 test!(u8, u16, u32, u64, u128, usize, AU64);
1414 test!(i8, i16, i32, i64, i128, isize);
1415 test!(f32, f64);
1416 }
1417
1418 #[test]
1419 fn test_try_cast_into_explicit_count() {
1420 macro_rules! test {
1421 ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
1422 let bytes = [0u8; $bytes];
1423 let ptr = Ptr::from_ref(&bytes[..]);
1424 let res =
1425 ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
1426 if let Some(expect) = $expect {
1427 let (ptr, _) = res.unwrap();
1428 assert_eq!(
1429 KnownLayout::pointer_to_metadata(ptr.as_inner().as_non_null().as_ptr()),
1430 expect
1431 );
1432 } else {
1433 let _ = res.unwrap_err();
1434 }
1435 }};
1436 }
1437
1438 #[derive(KnownLayout, Immutable)]
1439 #[repr(C)]
1440 struct ZstDst {
1441 u: [u8; 8],
1442 slc: [()],
1443 }
1444
1445 test!(ZstDst, 8, 0, Some(0));
1446 test!(ZstDst, 7, 0, None);
1447
1448 test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
1449 test!(ZstDst, 7, usize::MAX, None);
1450
1451 #[derive(KnownLayout, Immutable)]
1452 #[repr(C)]
1453 struct Dst {
1454 u: [u8; 8],
1455 slc: [u8],
1456 }
1457
1458 test!(Dst, 8, 0, Some(0));
1459 test!(Dst, 7, 0, None);
1460
1461 test!(Dst, 9, 1, Some(1));
1462 test!(Dst, 8, 1, None);
1463
1464 // If we didn't properly check for overflow, this would cause the
1465 // metadata to overflow to 0, and thus the cast would spuriously
1466 // succeed.
1467 test!(Dst, 8, usize::MAX - 8 + 1, None);
1468 }
1469}