1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
use std::rc::Rc;
use std::fmt::{self,Debug};
use std::ops::Deref;
use serde::de::*;
use serde::ser::*;
use std::hash::{Hash,Hasher};
use std::collections::hash_map::DefaultHasher;
use std::collections::HashMap;
use std::cell::RefCell;
use core::any::Any;
pub type Id = u64;
/// A shared instance of T that serializes once, not once per reference.
///
/// Unlike a "bare" Rc<T>, a Merkle<T> enjoys the practical property
/// that, when a structure holding multiple (shared) instances of T is
/// serialized, this serialized output holds only _one_ occurrence of
/// a T's serialized representation; the other occurrences merely
/// consist of the T's unique identifier (the serialization of an
/// `Id`, single machine word on modern machines).
///
/// In particular, a shared T has a unique ID permitting table-based
/// indirection, via temporary storage used by serialization and
/// serialization logic; by contrast, a bare Rc<T> lacks this
/// indirection, and thus, it lacks a compact serialized
/// representation for structures with abundant sharing. Generally,
/// abundant sharing via many shared Rc<_>s leads to exponential "blow
/// up" in terms of serialized space and time.
///
#[derive(Clone)]
pub struct Merkle<T> {
ptr:MerklePtr<T>
}
#[derive(Serialize, Deserialize, Clone)]
enum MerklePtr<T> {
/// Outside of serialized representations of a Merkle<T>, the
/// constructor Rc is the only valid inhabitant of this type.
Rc(Id, Rc<T>),
/// The Copy constructor only appears in the _serialized
/// representations_ of a Merkle<T> instance; it _never_ occurs in
/// the deserialized, in-memory versions of this type. We rely on
/// this invariant to avoid keeping around a lookup table after
/// deserialization, and to avoid doing table lookups for any
/// deref of a MerklePtr<_>.
Copy(Id),
}
impl<T:Hash+'static> Merkle<T> {
pub fn id(&self) -> Id {
match self.ptr {
MerklePtr::Rc(id, _) => id.clone(),
MerklePtr::Copy(id) => id.clone(),
}
}
pub fn new(t:T) -> Merkle<T> {
let mut hasher = DefaultHasher::new();
t.hash(&mut hasher);
let id = hasher.finish();
Merkle{ptr:MerklePtr::Rc(id, Rc::new(t))}
}
pub fn from_rc(rc:Rc<T>) -> Merkle<T> {
let mut hasher = DefaultHasher::new();
rc.hash(&mut hasher);
let id = hasher.finish();
Merkle{ptr:MerklePtr::Rc(id, rc)}
}
}
impl<T:PartialEq+'static> PartialEq for Merkle<T> {
fn eq(&self, other:&Self) -> bool {
match (&self.ptr, &other.ptr) {
(&MerklePtr::Rc(ref id1, ref rc1),
&MerklePtr::Rc(ref id2, ref rc2)) => {
if true {
// Shallow O(1) comparison, via unique IDs. This
// is "sound" to the extent that hashing avoids
// collisions. If you feel paranoid, follow the
// other implementation, which compares the
// content of the two Rc<_>s.
id1 == id2
} else {
rc1 == rc2
}
},
_ => unreachable!()
}
}
}
impl<T:PartialEq+'static> Eq for Merkle<T> { }
impl<T:'static+Hash> Hash for Merkle<T> {
fn hash<H>(&self, state: &mut H) where H: Hasher {
// The Merkle-tree-like structure of a MerklePtr<T> avoids
// "deep" hashing operations; instead, hashing merely
// re-hashes the pre-computed (unique) Id of this deep
// structure.
self.id().hash(state)
}
}
impl<T:Debug> fmt::Debug for Merkle<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.ptr {
MerklePtr::Rc(_, ref rc) => rc.fmt(f),
MerklePtr::Copy(_) => unreachable!()
}
}
}
/// We may deference a (deserialized) Merkle<T> just like an Rc<T>;
/// below, rely on the invariant that all deserialized Merkle<T>'s
/// consist of an Rc<T> (along with a unique ID).
impl<T> Deref for Merkle<T> {
type Target = T;
fn deref(&self) -> &T {
match self.ptr {
MerklePtr::Rc(_, ref rc) => &*rc,
MerklePtr::Copy(_) => unreachable!(),
}
}
}
impl<T:Serialize+Hash+'static> Serialize for Merkle<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
// Check to see if self.id has already been serialized; if so,
// do not serialize yet another copy; instead, serialize a
// Copy<T> with the same ID.
let orc : Option<Rc<T>> = table_get(&self.id());
match (&self.ptr, orc) {
(&MerklePtr::Copy(_), _) => unreachable!(),
(&MerklePtr::Rc(ref id, ref rc), None) => {
table_put(id.clone(), rc.clone());
self.ptr.serialize(serializer)
}
(&MerklePtr::Rc(ref id, ref _rc1), Some(ref _rc2)) => {
table_inc_copy_count();
let ptr_copy:MerklePtr<T> = MerklePtr::Copy(id.clone());
ptr_copy.serialize(serializer)
}
}
}
}
impl<'de,T:Deserialize<'de>+Hash+'static> Deserialize<'de> for Merkle<T> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
match MerklePtr::<T>::deserialize(deserializer) {
Ok(MerklePtr::Copy(id)) => {
match table_get(&id) {
None => unreachable!(),
Some(rc) => {
table_inc_copy_count();
Ok(Merkle{ptr:MerklePtr::Rc(id, rc)})
}
}
}
Ok(MerklePtr::Rc(id, rc)) => {
table_put(id.clone(), rc.clone());
Ok(Merkle{ptr:MerklePtr::Rc(id, rc)})
},
Err(err) => Err(err),
}
}
}
/////////////////////////////////////////////////////////////////////////////////////
struct Table {
copy_count:usize,
table:HashMap<Id,Box<Rc<dyn Any>>>
}
// Global table of serialized objects; permits us to avoid multiple
// serialized copies of a single, shared object.
thread_local!(static TABLE:
RefCell<Table> =
RefCell::new(Table{
copy_count:0,
table:HashMap::new()
}));
/// Put a reference-counted object into the table of serialized objects
fn table_put<T:Any+'static>(id:Id, x:Rc<T>) {
TABLE.with(|t| {
drop(t.borrow_mut().table.insert(id, Box::new(x)))
})
}
/// Increment the copy count associated with the table; used by
/// regression tests and other diagnostics.
fn table_inc_copy_count() {
TABLE.with(|t| {
t.borrow_mut().copy_count += 1;
})
}
/// Get a reference-counted object from the table of serialized objects
///
/// For documentation for rc_downcast feature, see this:
/// https://github.com/rust-lang/rust/blob/71d3dac4a86d192c2c80948621859da3b363fa50/src/liballoc/rc.rs#L621
///
fn table_get<T:'static>(id:&Id) -> Option<Rc<T>> {
TABLE.with(|t| {
match t.borrow().table.get(id) {
Some(ref brc) => {
let x : &Rc<dyn Any> = &**brc;
let y : Result<Rc<T>, Rc<dyn Any>> = (x.clone()).downcast::<T>();
match y {
Err(_) => {
panic!("downcast failed for id {:?}", id)
}
Ok(ref rc) => Some((*rc).clone())
}
}
None => None,
}
})
}
/// Reclaim the space used to serialize large structures. Returns the
/// "copy count" of the table.
///
/// We use this "copy count" for regression tests, to ensure that we
/// get the compactness that we expect in these tests.
///
/// This `clear` operation is essential for memory-sensitive programs
/// that dump their structures to external storage: when these
/// serialized structures are no longer needed by the Rust program,
/// their reference count will not drop to zero without first using
/// this operation.
///
pub fn clear() -> usize {
let copy_count =
TABLE.with(|t| {
let c = t.borrow().copy_count;
t.borrow_mut().table.clear();
t.borrow_mut().copy_count = 0;
c
});
copy_count
}
//////////////////////////////////////////////////////////////////////////////
mod list_example {
use super::Merkle;
#[derive(Hash,Clone,Debug,PartialEq,Eq,Serialize,Deserialize)]
enum List {
Nil,
Cons(usize, Merkle<List>)
}
fn nil() -> List {
List::Nil
}
fn cons(h:usize, t:List) -> List {
List::Cons(h, Merkle::new(t))
}
#[allow(unused)]
fn sum(l:&List) -> usize {
match *l {
List::Nil => 0,
List::Cons(ref h, ref t) => {
h + sum(&*t)
}
}
}
#[allow(unused)]
fn from_vec(v:&Vec<usize>) -> List {
let mut l = nil();
for x in v.iter() {
l = cons(*x, l);
}
return l
}
#[test]
fn test_elim_forms() {
let x = from_vec(&vec![1,2,3]);
assert_eq!(1+2+3, sum(&x))
}
#[test]
fn test_intro_forms() {
let x = nil();
let x = cons(1, x);
let y = cons(2, x.clone());
let z = cons(3, x.clone());
drop((x,y,z))
}
#[test]
fn test_serde() {
use serde_json;
let (value, expected_copy_count) = {
let x = nil();
let x = cons(1, x);
let y = cons(2, x.clone());
let z = cons(3, x.clone());
((x,y,z), 2)
};
let serialized = serde_json::to_string(&value).unwrap();
let copy_count1 = super::clear();
println!("serialized = {}", serialized);
println!("copy_count1 = {}", copy_count1);
assert_eq!(copy_count1, expected_copy_count);
let deserialized: (List,List,List) =
serde_json::from_str(&serialized[..]).unwrap();
let copy_count2 = super::clear();
println!("copy_count2 = {}", copy_count2);
assert_eq!(copy_count2, expected_copy_count);
assert_eq!(deserialized, value);
}
}