1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//! Package management for the Virgen build system.

use std::collections::HashMap;
use std::fs;
use std::io::Write;

use hir::def_id::DefId;
use rustc_hir::{self as hir, ItemId};
use rustc_middle::ty::TyCtxt;

use super::*;
use crate::*;

/// Traits that are reserved for the compiler
#[derive(Debug, Clone)]
pub enum LangTrait {
    /// `Interface` trait. (`hazardflow-designs/std/interface.rs`)
    Interface(DefId),

    /// `Default` trait.
    Default(DefId),

    /// `From` trait.
    From(DefId),

    /// `Into` trait.
    Into(DefId),
}

impl LangTrait {
    #[allow(unused)]
    fn def_id(&self) -> DefId {
        match self {
            LangTrait::Interface(id) | LangTrait::Default(id) | LangTrait::From(id) | LangTrait::Into(id) => *id,
        }
    }
}

/// The meta global information that is needed for compiling any modules in the crate
#[derive(Debug, Clone)]
pub(crate) struct Meta {
    lang_traits: Vec<LangTrait>,
}

impl Meta {
    /// Returns the `DefId` of the `Interface` trait
    pub(crate) fn interface_did(&self) -> DefId {
        self.lang_traits
            .iter()
            .find_map(|lang_trait| if let LangTrait::Interface(def_id) = lang_trait { Some(*def_id) } else { None })
            .expect("Interface trait must exist")
    }

    #[allow(unused)]
    pub(crate) fn find_lang_trait(&self, def_id: DefId) -> Option<LangTrait> {
        self.lang_traits.iter().find(|lang_trait| lang_trait.def_id() == def_id).cloned()
    }
}

/// The package manager for the Virgen build system
pub(crate) struct Package<'tcx> {
    /// The TyCtxt of the crate, which is needed to interact with the Rust compiler
    tcx: TyCtxt<'tcx>,

    /// The meta global information that is needed for compiling any modules in the crate
    meta: Rc<Meta>,

    /// The options for the compiler
    options: Rc<Options>,
}

impl<'tcx> Package<'tcx> {
    /// Creates a new `Package` instance.
    pub(crate) fn new(tcx: TyCtxt<'tcx>, options: Rc<Options>) -> VirgenResult<Self> {
        let lang_traits = ["Interface", "Default", "From", "Into"]
            .into_iter()
            .map(|name| {
                let def_id = find_trait_by_name(tcx, name).unwrap_or_else(|| panic!("{name} trait not found"));
                match name {
                    "Interface" => LangTrait::Interface(def_id),
                    "Default" => LangTrait::Default(def_id),
                    "From" => LangTrait::From(def_id),
                    "Into" => LangTrait::Into(def_id),
                    _ => unreachable!(),
                }
            })
            .collect();

        let meta = Meta { lang_traits }.into();

        Ok(Self { tcx, meta, options })
    }

    /// Returns whether the hir item is synthesizable or not.
    ///
    /// It checks (1) it has `#[synthesize]` attribute and (2) its path contains `--target` argument or not.
    fn is_synthesizable(&self, id: ItemId) -> bool {
        let hir_id = id.hir_id();

        // Returns `false` if it does not have `#[synthesize]` attribute.
        if get_hazardflow_attribute(self.tcx, hir_id) != Some(HazardFlowAttr::Synthesize) {
            return false;
        }

        let def_id = id.owner_id.def_id.to_def_id();
        let def_path = self.tcx.def_path(def_id);

        // Returns whether its path contains `--target` argument or not.
        def_path.data.iter().any(|path_data| match path_data.data.name() {
            rustc_hir::definitions::DefPathDataName::Named(sym) => self.options.target.should_compile(sym.as_str()),
            rustc_hir::definitions::DefPathDataName::Anon { .. } => false,
        })
    }

    /// Returns `Virgen` instances of all top-level modules.
    ///
    /// It iterates hir items and collects it if (1) it is a function, (2) it has `#[synthesize]` attribute, and (3) its path contains `--target` argument.
    fn collect_top_level_synthesizables(&self) -> Vec<Virgen<'tcx>> {
        let hir = self.tcx.hir();

        hir.items()
            .filter_map(|id: ItemId| {
                let item = hir.item(id);

                if matches!(item.kind, rustc_hir::ItemKind::Fn(..)) && self.is_synthesizable(id) {
                    Some(Virgen::top(self.tcx, self.meta.clone(), self.options.clone(), id.owner_id.def_id))
                } else {
                    None
                }
            })
            .collect()
    }

    /// Builds the package.
    ///
    /// It runs in a 3 stage process:
    ///
    /// 1. Find all top-level synthesizable modules in the crate
    /// 2. Preprocess all modules(and submodules) in the crate, while collecting all submodules.
    ///    After this stage, all the modules in the crate are found and they should be ready to be compiled.
    /// 3. Compile all modules in the crate
    pub(crate) fn build(&self) -> VirgenResult<()> {
        let top_modules = self.collect_top_level_synthesizables();

        for top_module in top_modules {
            self.build_top_module(top_module)?;
        }

        Ok(())
    }

    fn build_top_module(&self, top_module: Virgen<'tcx>) -> Result<(), VirgenError> {
        let (top_name, top_module_name, mut vir_modules) = self.virgen_modules(top_module)?;

        if self.options.integrate {
            let top = vir::integrate(vir_modules, top_name.clone());
            vir_modules = HashMap::new();
            vir_modules.insert(top_name.clone(), top);
        }

        let dirpath = self.options.build_dir.join(top_module_name);
        // Creates a directory for module.
        if !dirpath.exists() {
            fs::create_dir(&dirpath).map_err(|err| VirgenError::Fs { err })?;
        } else if dirpath.is_file() {
            fs::remove_file(&dirpath).map_err(|err| VirgenError::Fs { err })?;
            fs::create_dir(&dirpath).map_err(|err| VirgenError::Fs { err })?;
        }

        let mut merged_file = if self.options.merge {
            let mut file =
                fs::File::create(dirpath.join(format!("{}.v", top_name))).map_err(|err| VirgenError::Fs { err })?;
            writeln!(file, "`timescale 1ns / 1ps\n\n").map_err(|err| VirgenError::Fs { err })?;

            Some(file)
        } else {
            None
        };

        for (name, vir_module) in vir_modules {
            let vir_module = self.optimize(vir_module);

            self.analyze(&vir_module)?;

            if let Some(merged_file) = &mut merged_file {
                self.dump_verilog(merged_file, vir_module)?;
            } else {
                let mut file =
                    fs::File::create(dirpath.join(format!("{}.v", name))).map_err(|err| VirgenError::Fs { err })?;
                writeln!(file, "`timescale 1ns / 1ps\n\n").map_err(|err| VirgenError::Fs { err })?;
                self.dump_verilog(&mut file, vir_module)?;
            }
        }

        Ok(())
    }

    fn virgen_modules(
        &self,
        top_module: Virgen<'tcx>,
    ) -> Result<(String, String, HashMap<String, vir::Module>), VirgenError> {
        let top_name = top_module.name();
        let top_module_name = top_module.top_module_name();
        let mut modules = vec![top_module];
        let mut vir_modules = HashMap::new();

        while let Some(mut module) = modules.pop() {
            let submodules = module.preprocess()?;
            for submodule in submodules {
                // TODO: check if there is circular submodule instantiation later
                if let Some(m) = submodule.module_inst() {
                    modules.push(Virgen::submodule(self.tcx, self.meta.clone(), self.options.clone(), m))
                }
            }

            log::info!("Start virgen {}", module.name());
            match module.virgen() {
                Ok(vir_module) => {
                    log::info!("Synthesized {}/{}.v", self.options.build_dir.to_string_lossy(), module.name());
                    vir_modules.insert(module.name(), vir_module);
                }
                Err(e) => {
                    log::error!("Failed to synthesize {}\n{}", module.name(), e);
                }
            };
        }

        Ok((top_name, top_module_name, vir_modules))
    }

    // Dumps Verilog code.
    fn dump_verilog(&self, file: &mut std::fs::File, vir_module: vir::Module) -> Result<(), VirgenError> {
        writeln!(file, "{}", vir_module.to_string()).map_err(|err| VirgenError::Fs { err })?;

        Ok(())
    }

    fn optimize(&self, vir_module: vir::Module) -> vir::Module {
        let mut opts: Vec<fn(vir::Module) -> vir::Module> = vec![];

        if self.options.inline_always {
            opts.push(vir::opt::inline_always)
        };

        if self.options.wire_cache {
            opts.push(vir::opt::wire_cache_opt)
        };

        if self.options.deadcode {
            opts.push(vir::opt::dead_code_opt)
        };

        opts.into_iter().fold(vir_module, |module, opt| opt(module))
    }

    #[allow(clippy::type_complexity)]
    fn analyze(&self, vir_module: &vir::Module) -> Result<(), VirgenError> {
        let mut analysis: Vec<(&str, fn(&vir::Module) -> Result<(), VirgenError>)> = vec![];

        if self.options.detect_comb_loop {
            assert!(self.options.integrate);

            analysis.push(("detect_comb_loop", vir::analysis::detect_comb_loop))
        }

        for (name, a) in analysis {
            // check time for each analysis
            let start = std::time::Instant::now();

            let analysis_result = a(vir_module);

            log::error!("{name} took: {:?}", start.elapsed());

            analysis_result?;
        }

        Ok(())
    }
}