1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//! Mesh with delays.

#![allow(unused)] // Added for assignment.
#![allow(warnings)] // Added for assignment.

use super::utils::*;
use super::*;

/// Max simultaneous matrix multiplications.
pub const MAX_SIMULTANEOUS_MATMULS: usize = 5;
/// Matmul id bits.
pub const ID_BITS: usize = clog2(MAX_SIMULTANEOUS_MATMULS);
/// Total rows.
pub const TOTAL_ROWS: usize = BLOCK_SIZE;

const FIFO_LENGTH: usize = MAX_SIMULTANEOUS_MATMULS + 1;

/// Type of data of `a`.
pub type A = Array<Array<S<INPUT_BITS>, TILE_ROWS>, MESH_ROWS>;
/// Type of data of `b`.
pub type B = Array<Array<S<INPUT_BITS>, TILE_COLS>, MESH_COLS>;
/// Type of data of `c`.
pub type C = Array<Array<S<OUTPUT_BITS>, TILE_COLS>, MESH_COLS>;
/// Type of data of `d`.
pub type D = Array<Array<S<INPUT_BITS>, TILE_COLS>, MESH_COLS>;

/// Resolver signal.
///
/// Represents active computations in the Mesh.
pub type TagsInProgress = Array<MeshTag, FIFO_LENGTH>;

/// Flag for determining which matrix comes out from transposer.
#[derive(Debug, Clone, Copy)]
pub enum TransposeFlag {
    /// A is transposed
    A,
    /// B is transposed
    B,
    /// D is transposed
    D,
}

/// Mesh tag
#[derive(Debug, Clone, Copy)]
pub struct MeshTag {
    /// ROB ID.
    pub rob_id: HOption<U<{ clog2(RS_ENTRIES) }>>,
    /// SRAM write address.
    pub addr: LocalAddr,
    /// Number of rows.
    pub rows: U<{ clog2(BLOCK_SIZE + 1) }>,
    /// Number of cols.
    pub cols: U<{ clog2(BLOCK_SIZE + 1) }>,
}

impl Default for MeshTag {
    /// Returns garbage tag.
    fn default() -> Self {
        Self { rob_id: None, addr: LocalAddr::from(GARBAGE_ADDR.into_u()), rows: 0.into_u(), cols: 0.into_u() }
    }
}

/// Request signals to the mesh.
#[derive(Debug, Clone, Copy)]
pub struct MeshReq {
    /// Dataflow value used in the PE.
    pub dataflow: Dataflow,
    /// Indicates whether the propagate value should be flipped.
    pub propagate_flip: bool,
    /// Shift value used in the PE.
    pub shift: U<{ clog2(ACC_BITS) }>,
    /// Indicates that `A` should be transposed, used to invoke a transposer.
    pub transpose_a: bool,
    /// Indicates that either `B` or `D` should be transposed, used to invoke a transposer.
    pub transpose_bd: bool,
    /// Specifies the number of rows in the matmul operation.
    pub total_rows: U<{ clog2(BLOCK_SIZE + 1) }>,
    /// Tag.
    pub tag: MeshTag,
    /// Indicates whether the request represents a flush.
    pub flush: bool,
}

/// Response signals from the mesh.
#[derive(Debug, Clone, Copy)]
pub struct MeshResp {
    /// Specifies the number of rows in the matmul operation.
    pub total_rows: U<{ clog2(BLOCK_SIZE + 1) }>,
    /// Tag.
    pub tag: MeshTag,
    /// Indicates that the row represents the last row.
    pub last: bool,
    /// Output data.
    pub data: C,
}

/// Matmul operation configuration.
#[derive(Debug, Default, Clone, Copy)]
pub struct Config {
    /// Matmul ID.
    pub matmul_id: U<ID_BITS>,
    /// Propagation.
    pub propagate: Propagate,
}

impl Config {
    /// Creates a new configuration.
    pub fn new(matmul_id: U<ID_BITS>, propagate: Propagate) -> Self {
        Self { matmul_id, propagate }
    }

    /// Returns the updated global configuration based on the incoming request.
    ///
    /// For more details, see Section 2.3.1 of the assignment documentation.
    ///
    /// # Arguments
    ///
    /// - `self`: The current configuration state.
    /// - `propagate_flip`: A boolean indicating whether to toggle the propagate value in processing elements (PEs).
    pub fn update(self, propagate_flip: bool) -> Self {
        todo!("assignment 6")
    }
}

/// Wrapper type of request and configuration.
#[derive(Debug, Clone, Copy)]
pub struct ReqExtended {
    /// Mesh request.
    pub req: MeshReq,
    /// Matmul operation configuration.
    pub config: Config,
}

/// Manages two FIFOs containing the mesh tag and total rows, and returns the metadata transferred from the FIFO.
///
/// These metadata are used to store the Mesh output in the SRAM (Scratchpad + Accumulator).
///
/// For more details, see Section 2.3.8 of the assignment documentation.
///
/// # Arguments
///
/// - `req`: A request containing metadata. It sends the tags in the `tags_fifo` as the resolver.
/// - `control`: Control signals from the Mesh output.
fn fifos(
    req: I<VrH<ReqExtended, TagsInProgress>, { Dep::Helpful }>,
    control: Valid<PeColControl>,
) -> (Valid<MeshTag>, Valid<U<{ clog2(BLOCK_SIZE + 1) }>>) {
    // Duplicate control signal and request, because we need to address two fifo.
    let (control_to_tag_fifo, control_to_total_rows_fifo) = control.lfork();

    // Section 2.3.8 (1) Filter out flush request.
    let req: I<VrH<ReqExtended, TagsInProgress>, { Dep::Helpful }> = todo!("assignment 6");

    // Section 2.3.8 (2) Calculate future `matmul_id`.
    let (tag, total_rows) = req
        .map_resolver_inner::<(TagsInProgress, ())>(|(tags, _)| tags)
        .map(|ReqExtended { req, config }| {
            let tag_id = todo!("assignment 6");
            let total_rows_id = todo!("assignment 6");
            ((tag_id, req.tag), (total_rows_id, req.total_rows))
        })
        .unzip();

    // Section 2.3.8 (3) Convert resolver type and calculate `TagsInProgress`.
    let tag: I<VrH<(U<ID_BITS>, MeshTag), ((), FifoS<(U<ID_BITS>, MeshTag), FIFO_LENGTH>)>, { Dep::Helpful }> =
        todo!("Caculate the resolver signal `TagsInProgress` here");
    let total_rows = total_rows.map_resolver_inner::<((), FifoS<(U<ID_BITS>, U<5>), FIFO_LENGTH>)>(|_| ());

    // FIFO
    let tag_fifo = tag.multi_headed_transparent_fifo().filter_map(|p| p.head());
    let total_rows_fifo = total_rows.multi_headed_transparent_fifo().filter_map(|p| p.head());

    // Section 2.3.8 (4) Pop one element and get metadata.
    let tag = (tag_fifo, control_to_tag_fifo)
        .join()
        .map_resolver_inner_with_p::<()>(|ip, _| {
            let pop: bool = todo!("assignment 6");
            ((), if pop { 1.into_u() } else { 0.into_u() })
        })
        .filter_map::<MeshTag>(|((head_id, tag), mesh_out_control)| {
            let transfer: bool = todo!("assignment 6");
            if transfer {
                Some(tag)
            } else {
                None
            }
        });
    let total_rows = (total_rows_fifo, control_to_total_rows_fifo)
        .join()
        .map_resolver_inner_with_p::<()>(|ip, _| {
            let pop: bool = todo!("assignment 6");
            ((), if pop { 1.into_u() } else { 0.into_u() })
        })
        .filter_map::<U<{ clog2(BLOCK_SIZE + 1) }>>(|((head_id, total_rows), mesh_out_control)| {
            let transfer: bool = todo!("assignment 6");
            if transfer {
                Some(total_rows)
            } else {
                None
            }
        });

    // NOTE: Converting to the valid interface is safe as there are no longer any hazards.
    (tag.always_into_valid(), total_rows.always_into_valid())
}

/// Invokes a Transposer.
///
/// Returns three matrices, with at most one matrix is transposed.
///
/// For more details, see Section 2.3.5 of the assignment documentation.
///
/// # Arguments
///
/// - `data`: It contains request and 3 matrices. The request contains `dataflow`, `transpose_a` and `transpose_bd`.
fn transpose(data: Valid<(MeshReq, A, B, D)>) -> Valid<(A, B, D)> {
    // Section 2.3.5 (1) Attach selector.
    let (a_with_sel, b_with_sel, d_with_sel): (
        Valid<(A, BoundedU<2>)>,
        Valid<(B, BoundedU<2>)>,
        Valid<(D, BoundedU<2>)>,
    ) = todo!("assignment 6");

    // Section 2.3.5 (2) Branch interface.
    let [a, a_transpose] = a_with_sel.branch();
    let [b, b_transpose] = b_with_sel.branch();
    let [d, d_transpose] = d_with_sel.branch();

    let a_transpose = a_transpose.map(|p| (TransposeFlag::A, p));
    let b_transpose = b_transpose.map(|p| (TransposeFlag::B, p));
    let d_transpose = d_transpose.map(|p| (TransposeFlag::D, p.reverse()));

    // Section 2.3.5 (3) Select transpose target.
    // NOTE: `Valid<A>` does not mean that `A` should be transposed, actually the types `A`, `B`, and `D` are the same.
    let (flag, transpose_target): (Valid<TransposeFlag>, Valid<A>) = todo!("assignment 6");

    let transposed = transpose_target.map(|vec| vec.concat()).comb(transposer_ffi);

    // Section 2.3.5 (4) Identify which matrix is transposed among A, B, or D.
    let [a_transposed, b_transposed, d_transposed]: [Valid<A>; 3] =
        (flag, transposed).join_valid().map(|(flag, arr)| todo!("assignment 6")).branch();

    // Section 2.3.5 (5) Select one among `X` and `X_transposed`.
    let a = [a_transposed, a].merge();
    let b = [b_transposed, b].merge();
    let d = [d_transposed.map(|p| p.reverse()), d].merge();

    (a, b, d).join_valid()
}

/// Mesh with delays.
pub fn mesh_with_delays(
    data: Vr<(A, B, D)>,
    req: I<VrH<MeshReq, TagsInProgress>, { Dep::Helpful }>,
) -> Valid<MeshResp> {
    // Section 2.3.1 Update Configurations.
    let req: I<VrH<ReqExtended, TagsInProgress>, { Dep::Helpful }> = todo!("assignment 6");

    let (mesh_req, fifo_req) = req.map_resolver_inner::<((), TagsInProgress)>(|(_, tags)| tags).lfork();

    // Section 2.3.2 Request Buffer.
    let mesh_req: Vr<(ReqExtended, bool)> = mesh_req.fsm_egress::<(ReqExtended, bool), U<{ clog2(BLOCK_SIZE) }>>(
        U::default(),
        true,
        true,
        |req_ext, counter| todo!("assignment 6"),
    );

    // Section 2.3.3 Branch Request.
    let [mesh_req_flush, mesh_req_matmul]: [Vr<(ReqExtended, bool)>; 2] = todo!("assignment 6");

    // NOTE: Converting to the valid interface is safe as there are no longer any hazards.
    let mesh_req_flush = mesh_req_flush.always_into_valid();
    let (mesh_req_matmul, mesh_data) = (mesh_req_matmul, data)
        .join_vr()
        .always_into_valid()
        .map(|((req_ext, last), (a, b, d))| {
            let matmul_req = (req_ext, last);
            let mesh_data = (req_ext.req, a, b, d);
            (matmul_req, mesh_data)
        })
        .unzip();

    // Section 2.3.4 Merging Requests.
    let mesh_req: Valid<(ReqExtended, bool)> = todo!("assignment 6");

    // Section 2.3.5 Invoke a Transposer.
    let mesh_data_transposed = mesh_data.comb(transpose);

    // Section 2.3.6 Mesh IO type conversion + Section 2.3.7 Shift.
    let mesh_out = (mesh_data_transposed, mesh_req)
        .comb(preprocess_type)
        .comb(preprocess_shift)
        .comb(move |(in_row, in_col)| mesh_ffi(in_row, in_col))
        .comb(postprocess_shift)
        .comb(postprocess_type);

    let (mesh_out, mesh_out_control) = mesh_out.map(|p| (p, p.1)).unzip();

    // Section 2.3.8 FIFO.
    let (tag, total_rows) = fifos(fifo_req, mesh_out_control);

    // Section 2.3.9 Return Mesh Response.
    (tag, total_rows, mesh_out).zip_any_valid().filter_map(|(tag, total_rows, mesh_out)| todo!("assignment 6"))
}

/// Mesh with delays.
#[synthesize]
pub fn mesh_with_delays_default(
    a: Vr<A>,
    b: Vr<B>,
    d: Vr<D>,
    req: I<VrH<MeshReq, TagsInProgress>, { Dep::Helpful }>,
) -> Valid<MeshResp> {
    let data = (a, b, d).join_vr();
    mesh_with_delays(data, req)
}