1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//! Array.
use core::ops::*;
use hazardflow_macro::magic;
use crate::prelude::*;
use crate::std::clog2;
/// An array of signals.
#[derive(Debug, Clone, Copy)]
#[magic(array::array)]
pub struct Array<V: Copy, const N: usize> {
_marker: core::marker::PhantomData<V>,
}
impl<V: Copy + Default, const N: usize> Default for Array<V, N> {
fn default() -> Self {
V::default().repeat()
}
}
impl<V: Copy + Default, const N: usize> Array<V, N> {
/// Folds the array into a single value.
///
/// The fold order is not guaranteed, so the operation `f` must be associative.
// TODO: Currently this is just an alias of `fold` with default value. Implement this magic when needed.
// TODO: When implementing this magic, make sure to check the constraints below.
//
// Tree fold
//
// This operation folds an array with 2^K elements by constructing a fold tree(with height K) as below:
// ```text
// O O ... O O
// \ / (op) \ / (op)
// O ... O
//
// ...
//
// \/
// O
// ````
//
// This operation can generated better verilog, but need to be used carefully
//
// 1. Associativity of the operation
//
// Unlike the `Array::fold`, which is foldleft, the order of operation will rearranged
// arbitrarily. So if the operation is not associative, the result might be different from
// expected.
//
// 2. Number of elements
//
// In order to construct the fold tree in a readable way in verilog (which is nested for loop),
// we only allow use of this api only when length is power of 2 (ex. 1, 2, 4, 8, ...).
// You should manually resize to use this api for arrays that does not satisfy the constraint
//
// #[magic(array::tree_fold)]
pub fn fold_assoc<F: FnOnce(V, V) -> V>(self, f: F) -> V {
self.fold(V::default(), f)
}
/// Finds the index of the first element that satisfies the given condition.
pub fn find_idx(self, f: impl Fn(V) -> bool) -> HOption<U<{ clog2(N) }>> {
self.enumerate().map(|(idx, elt)| if f(elt) { Some(idx) } else { None }).fold_assoc(|lhs, rhs| lhs.or(rhs))
}
}
impl<V: Copy, const N: usize> Array<V, N> {
/// Returns a new array with the `idx`-th element set to `elt`.
#[magic(array::set)]
pub fn set<Idx: Into<U<{ clog2(N) }>>>(self, _idx: Idx, _elt: V) -> Array<V, N> {
compiler_magic!()
}
/// Returns a new array with the `idx`-th element set to `elt` if `cond` is true.
pub fn set_cond(self, cond: bool, idx: U<{ clog2(N) }>, elt: V) -> Array<V, N> {
if cond {
self.set(idx, elt)
} else {
self
}
}
/// Returns a new clipped array of size `M` starting from `index`.
#[magic(array::clip_const)]
pub fn clip_const<const M: usize>(self, _index: usize) -> Array<V, M> {
compiler_magic!()
}
/// Returns a new array that has tuples from the two given arrays as elements.
#[magic(array::zip)]
pub fn zip<W: Copy>(self, _other: Array<W, N>) -> Array<(V, W), N> {
compiler_magic!()
}
/// Returns a new array whose elements are enumerated with their indices.
pub fn enumerate(self) -> Array<(U<{ clog2(N) }>, V), N> {
range::<N>().zip(self)
}
/// Transforms elements of `self` using `f`.
#[magic(array::map)]
pub fn map<W: Copy, F: FnOnce(V) -> W>(self, _f: F) -> Array<W, N> {
compiler_magic!()
}
/// Folds the array into a single value.
///
/// The fold order is from left to right. (i.e. `foldl`)
#[magic(array::fold)]
pub fn fold<B: Copy, F: FnOnce(B, V) -> B>(self, _init: B, _f: F) -> B {
compiler_magic!()
}
/// Tests if any element matches a predicate.
// TODO: Use tree fold?
pub fn any<F: Fn(V) -> bool>(self, f: F) -> bool {
self.fold(false, |acc, elt| acc | f(elt))
}
/// Tests if every element matches a predicate.
/// TODO: Use tree fold?
pub fn all<F: Fn(V) -> bool>(self, f: F) -> bool {
self.fold(true, |acc, elt| acc & f(elt))
}
/// Resizes the given array.
#[magic(array::resize)]
pub fn resize<const M: usize>(self) -> Array<V, M> {
compiler_magic!()
}
/// Chunks the array into an array of arrays.
#[magic(array::chunk)]
pub fn chunk<const M: usize>(self) -> Array<Array<V, M>, { N / M }> {
compiler_magic!()
}
/// Returns a new array with the two given arrays appended.
#[magic(array::append)]
pub fn append<const M: usize>(self, _other: Array<V, M>) -> Array<V, { N + M }> {
compiler_magic!()
}
/// Returns a new array with the `M` elements starting from `index` set to the elements of `other`.
#[magic(array::set_range)]
pub fn set_range<const M: usize>(self, _index: usize, _other: Array<V, M>) -> Array<V, N> {
compiler_magic!()
}
/// Returns a Cartesian product of the two arrays.
pub fn cartesian_product<W: Copy, const M: usize>(self, other: Array<W, M>) -> Array<(V, W), { N * M }> {
self.map(|self_elt| other.map(|other_elt| (self_elt, other_elt))).concat()
}
/// Reverses the array.
pub fn reverse(self) -> Array<V, N>
where [(); clog2(N)]: {
range::<N>().map(|idx| self[U::from(N - 1) - idx])
}
}
impl<V: Copy, const N: usize, const M: usize> Array<Array<V, N>, M> {
/// Concatenates the array of arrays into a 1D array.
#[magic(array::concat)]
pub fn concat(self) -> Array<V, { M * N }> {
compiler_magic!()
}
}
/// Returns an array containing `0..N`.
// TODO: make it into macro
// TODO: allow different starting point (FROM..START)
#[magic(array::range)]
pub fn range<const N: usize>() -> Array<U<{ clog2(N) }>, N> {
compiler_magic!()
}
impl<V: Copy, const N: usize> From<[V; N]> for Array<V, N> {
#[magic(array::from)]
fn from(_value: [V; N]) -> Self {
compiler_magic!()
}
}
impl<V: Copy, const N: usize, const M: usize> Index<U<N>> for Array<V, M> {
type Output = V;
#[magic(array::index)]
fn index(&self, _idx: U<N>) -> &V {
compiler_magic!()
}
}
impl<V: Copy, const N: usize> PartialEq for Array<V, N> {
#[magic(array::eq)]
fn eq(&self, _other: &Self) -> bool {
compiler_magic!()
}
#[allow(clippy::partialeq_ne_impl)]
#[magic(array::ne)]
fn ne(&self, _other: &Self) -> bool {
compiler_magic!()
}
}
impl<V: Copy, const M: usize> Index<usize> for Array<V, M> {
type Output = V;
#[magic(array::index)]
fn index(&self, _idx: usize) -> &V {
compiler_magic!()
}
}
impl<V: Copy, const N: usize> BitOr for Array<V, N> {
type Output = Self;
#[magic(array::bitor)]
fn bitor(self, _rhs: Self) -> Self::Output {
compiler_magic!()
}
}
impl<V: Copy, const N: usize> BitAnd for Array<V, N> {
type Output = Self;
#[magic(array::bitand)]
fn bitand(self, _rhs: Self) -> Self::Output {
compiler_magic!()
}
}
impl<V: Copy, const N: usize> BitXor for Array<V, N> {
type Output = Self;
#[magic(array::bitxor)]
fn bitxor(self, _rhs: Self) -> Self {
compiler_magic!()
}
}
/// Repeat.
pub trait RepeatExt: Copy {
/// Returns an array with the given value repeated `N` times.
fn repeat<const N: usize>(self) -> Array<Self, N>;
}
impl<T: Copy> RepeatExt for T {
#[magic(array::repeat)]
fn repeat<const N: usize>(self) -> Array<Self, N> {
compiler_magic!()
}
}